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Two Well-Studied Channel Models

B Binary Symmetric Channels (BSC)
® Each bit is flipped with constant probability p

B Worst-Case (or Adversarial) Channels
® Only weight of error vectors is restricted



Two Well-Studied Channel Models

B Binary Symmetric Channels (BSC)
® Each bit is flipped with constant probability p

-> Introduce errors by simply flipping a coin
( Low-cost computation )

B Worst-Case (or Adversarial) Channels
® Only weight of error vectors is restricted

- Introduce errors based on the full knowledge
( High-cost computation )



Computationally-Bounded Channels

B Introduced by Lipton (STACS 1994)

B Channels = Polynomial-time bounded algorithms
(with error weight restriction)

® Lie between BSC and Worst-Case Channels

B Related results
® PKI setting [Micali et al. (TCC 2005)]

® \Vithout shared randomness or PKI
[Guruswami, Smith (FOCS 2010)]



This Work

B Introduce “Samplable Additive-Error Channels”
as another intermediate model

B |nvestigate the possibilities and limitations
for the reliable communication over this channel



Samplable Distributions

m Distribution Z over {0,1}" is samplable

& Exist probabilistic polynomial-time algorithm S
s.t. S(1") is distributed according to Z

B Related work on samplable distributions
® Data compression [GS91, Wee04, TVZ05]

® Randomness extraction [TV0O, Vio11, DW12,
DRV12, DPW14]



Samplable Additive-Error Channels

B Additive channel C4: {0,1}" = {0,1}"is
defined by a samplable distibution Z s.t.

C{X)=x+2z,z~7Z

® Error vector z does not depend on x

® Dist. Z does not depend on the code

e Conversely, the code can depend on Z

® \Weight of z is not bounded



Reasons for Introducing

his Model

B Error distr. is same for every code/codeword
-> Error-correction problem is simple

B Error distribution is samplable

- Computational constraints on error vectors

can help error correction?

m Errors without weight restriction

- High-weight errors are correctable
iIf they have “nice structure” ?

What Z is correctable?



Correctability of Samplable Additive Errors

B Use Shannon entropy H(Z) as criterion
1 1

= E p,(2)log
Pz (Z)_ zEsupp(Z) Pz (Z)
® H(Z) € [0, n] since Zis over {0,1}"
® H(Z) = 0 - easily correctable

H(Z)=E|log

® H(Z) = n = uncorrectable

B What coding rate R = k/n is achievable?

K bit = n bit

message  encode codeword




Observation 1: Zis BSC

B /Z can simulate BSC

.

3 Z with H(Z) = n-h(p) (= Q(n))
uncorrectable for R > 1 — h(p)




Observation 2: Z is pseudo-random

m /Z is the output of pseudo-random generator,
-> Not correctable by poly-time algorithms

N

JdZwithH(Z)<nt, 0<e< 1,
uncorrectable by polynomial-time algorithms
e Assume OWF exists




Observation 3: Z forms a linear subspace

V vector in linear space Z ¢ {0,1}" of dim. m is
correctable by a linear code withrate R=1-m/n
e HZ)=m

e Decoding is efficient

B Proof sketch:

® For basis {z,, ..., z},
3 linearmap T : {0,1}" = {0,1}™ s.t.
T(2) = (a4, ..., a,,) for Verror vector z = %, az,

® Thecode={x:T(x)=0}



Observation 4: Z is flat

Theorem 4.1

V flat Z is correctable by linear code with

rate R<1-m/n-Q(log(1/€)/n) and error € > 0
e H(Z) =m (|supp(2)| =2m)

e Code is not explicitly given

B Proof sketch: Equivalence between linear code ensemble
and linear lossless condenser [Cheraghchi (ISIT 2009)]

Theorem 4.2

V flat Z is uncorrectable for rate R > 1 — m/n + O(1/n)
and error € < 1/2 (|supp(Z)| = 2™)

B Proof sketch: Need to divide received word space {0,1}"
into 2R" disjoint sets each of size (1 — €)2™



Observation 5: Uncorrectable Z with low entropy

YV w(log n) <m < n, d samplable Z with H(Z) = m
uncorrectable by “efficient syndrome decoding”

for rate R > w( (log n)/n)
e Assume “oracle access” to some oracle

m Proof sketch:

® J samplable Z with H(Z) = w(log n) not efficiently
compressible to length < n — w(log n) [Wee (CCC2004)]
(Assuming “oracle access”)

® Zis compressible to length n(1 — R) by linear function
< Z Is correctable with rate R by syndrome decoding
[Cair et al. 2004]




Observation 6: Z is small-biased distribution

B Sample space S € {0,1}" is 0-biased
& V non-zeroa e {0,1}", | E, [ (-1)2*]| <6

Z is small-biased < Indistinguishable from uniform
by linear functions

YV Z is uncorrectable for rate
R>1-Q(log(1/0) / n) with error € < 1/2
If Z is uniform over &6-biased sample space S

B Proof sketch: Z can work as the key of the one-time pad
If message has entropy [Dodis, Smith (TCC2005)]

Corollary 6.1

3 Z with H(Z) = m uncorrectable for
rate R=1-m/n + O((log n)/n)




Correctability of Samplable Additive Errors (Summary)

Efficiently correctable Trivial

Efficiently uncorrectable
. Oracle
w(log n) by syndrome decoding 2CCESS Theorem 5
for R > w( (log n)/n)

¢ O<e<1) Efficiently uncorrectable OWF Theorem 2
n+h(p) (0 < p <1) Uncorrectable for R > 1 - h(p) Theorem 1

V linear space Z of dim. mis

correctable for R <1 - m/n Theorem 3

0<m<n Y flat Z is correctable for Theorem 4.1

R<1-m/n-Q(log(1/€)/n)

Y flat Z is uncorrectable for
O<m<n R>1-m/n+O(/n) Theorem 4.2

Y 6-biased Z is uncorrectable
forR=1-m/n+ O((log n)/n)

n Uncorrectable Trivial

Corollary 6.1



Conclusions

Our Results

B Introduce “Samplable Additive-Error Channels”

B |nvestigate the correctability

Future Work

B Any practical situations captured by this model
(with positive results)?

B More positive results (on more restricted Z?)
® |Log-space/constant-depth samplable Z

B Prove without assumptions (OWF, oracle access)
® Or prove the assumption is necessary



