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Two Well-Studied Channel Models 

n  Binary Symmetric Channels (BSC)
l  Each bit is flipped with constant probability p
 



n  Worst-Case (or Adversarial) Channels
l  Only weight of error vectors is restricted
 




Two Well-Studied Channel Models 

n  Binary Symmetric Channels (BSC)
l  Each bit is flipped with constant probability p
à Introduce errors by simply flipping a coin 
    ( Low-cost computation )


n  Worst-Case (or Adversarial) Channels
l  Only weight of error vectors is restricted
à Introduce errors based on the full knowledge 
    ( High-cost computation )



Computationally-Bounded Channels 

n  Introduced by Lipton (STACS 1994)

n  Channels = Polynomial-time bounded algorithms 
                   (with error weight restriction)
l  Lie between BSC and Worst-Case Channels

n  Related results
l  PKI setting [Micali et al. (TCC 2005)]
l  Without shared randomness or PKI 

[Guruswami, Smith (FOCS 2010)] 



This Work 

n  Introduce “Samplable Additive-Error Channels” 
as another intermediate model

n  Investigate the possibilities and limitations  
for the reliable communication over this channel 



Samplable Distributions 

n  Distribution Z over {0,1}n is samplable

ó Exist probabilistic polynomial-time algorithm S 
     s.t. S(1n) is distributed according to Z

n  Related work on samplable distributions
l  Data compression [GS91, Wee04, TVZ05]
l  Randomness extraction [TV00, Vio11, DW12, 

DRV12, DPW14]



Samplable Additive-Error Channels 

n  Additive channel CZ : {0,1}n à {0,1}n is  
defined by a samplable distibution Z s.t.

　　CZ(x) = x + z, z ~ Z 


l  Error vector z does not depend on x
l  Dist. Z does not depend on the code

l  Conversely, the code can depend on Z

l  Weight of z is not bounded 



Reasons for Introducing This Model 
n  Error distr. is same for every code/codeword 

à Error-correction problem is simple

n  Error distribution is samplable 
à Computational constraints on error vectors 
     can help error correction?

n  Errors without weight restriction 
à High-weight errors are correctable  
     if they have “nice structure” ?

What Z is correctable? 



Correctability of Samplable Additive Errors 

n  Use Shannon entropy H(Z) as criterion

l  H(Z) ∈ [0, n] since Z is over {0,1}n

l  H(Z) = 0 à easily correctable
l  H(Z) = n à uncorrectable

n  What coding rate R = k/n is achievable? 
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Observation 1: Z is BSC 

n  Z can simulate BSC 

 ∃ Z with H(Z) = n･h(p) ( = Ω(n) )
 uncorrectable for R > 1 – h(p)

Theorem 1 



Observation 2: Z is pseudo-random 

n  Z is the output of pseudo-random generator,  
à Not correctable by poly-time algorithms 
 

 ∃ Z with H(Z) ≤ nε, 0 < ε < 1, 
 uncorrectable by polynomial-time algorithms
l  Assume OWF exists

Theorem 2 



Observation 3: Z forms a linear subspace 

n  Proof sketch:
l  For basis {z1, …, zm}, 
∃ linear map T : {0,1}n à {0,1}m s.t. 
T(z) = (a1, …, am) for ∀error vector z = Σi aizi

l  The code = { x : T(x) = 0 } 

 ∀ vector in linear space Z ⊆ {0,1}n of dim. m is 
 correctable by a linear code with rate R = 1 – m/n
l  H(Z) = m
l  Decoding is efficient

Theorem 3 



Observation 4: Z is flat 

n  Proof sketch: Equivalence between linear code ensemble 
and linear lossless condenser [Cheraghchi (ISIT 2009)] 

 ∀ flat Z is correctable by linear code with  
 rate R < 1 – m/n – Ω( log(1/ε)/n ) and error ε > 0
l  H(Z) = m ( |supp(Z)| = 2m )
l  Code is not explicitly given

Theorem 4.1 

 ∀ flat Z is uncorrectable for rate R ≥ 1 – m/n + O(1/n)
 and error ε < 1/2  ( |supp(Z)| = 2m )

Theorem 4.2 

n  Proof sketch: Need to divide received word space {0,1}n 
into 2Rn disjoint sets each of size (1 – ε)2m  



Observation 5: Uncorrectable Z with low entropy 

n  Proof sketch:
l  ∃ samplable Z with H(Z) = ω(log n) not efficiently 

compressible to length < n – ω(log n) [Wee (CCC2004)] 
(Assuming “oracle access”)

l  Z is compressible to length n(1 – R) by linear function 
ó Z is correctable with rate R by syndrome decoding 
[Cair et al. 2004]  

 ∀ ω( log n ) < m < n, ∃ samplable Z with H(Z) = m 
 uncorrectable by “efficient syndrome decoding”  
 for rate R > ω( (log n)/n )
l  Assume “oracle access” to some oracle

Theorem 5 



Observation 6: Z is small-biased distribution 
n  Sample space S ⊆ {0,1}n is δ-biased 

ó ∀ non-zero a ∈ {0,1}n, | Ex~S[ (–1)a･x ] | ≤ δ

 ∀ Z is uncorrectable for rate  
 R > 1 – Ω( log(1/δ) / n ) with error ε < 1/2  
 if Z is uniform over δ-biased sample space S

Theorem 6 

n  Proof sketch: Z can work as the key of the one-time pad 
if message has entropy [Dodis, Smith (TCC2005)] 

∃ Z with H(Z) = m uncorrectable for  
rate R ≥ 1 – m/n + O( (log n)/n ) 

Corollary 6.1  

Z is small-biased ó Indistinguishable from uniform  
                                 by linear functions



Correctability of Samplable Additive Errors (Summary) 
H(Z) Correctability Assump. References 

0 Efficiently correctable Trivial 

ω(log n)  
Efficiently uncorrectable  
by syndrome decoding  
for R > ω( (log n)/n )

Oracle 
access Theorem 5

nε  (0 < ε < 1)  Efficiently uncorrectable OWF Theorem 2 

n･h(p) (0 < p < 1) Uncorrectable for R > 1 – h(p) Theorem 1

0 ≤ m ≤ n ∀ linear space Z of dim. m is
correctable for R ≤ 1 – m/n Theorem 3 

0 ≤ m ≤ n ∀ flat Z is correctable for  
R ≤ 1 – m/n – Ω(log(1/ε)/n) Theorem 4.1 

0 ≤ m ≤ n ∀ flat Z is uncorrectable for  
R > 1 – m/n + O(1/n)  Theorem 4.2 

0 ≤ m ≤ n ∀ δ-biased Z is uncorrectable 
for R ≥ 1 – m/n + O( (log n)/n )  Corollary 6.1 

n Uncorrectable Trivial 



Conclusions 
Our Results
n  Introduce “Samplable Additive-Error Channels”
n  Investigate the correctability

Future Work
n  Any practical situations captured by this model 

(with positive results)? 
n  More positive results (on more restricted Z?)

l  Log-space/constant-depth samplable Z
n  Prove without assumptions (OWF, oracle access)

l  Or prove the assumption is necessary


