Correction of Samplable Additive Errors

Kenji Yasunaga Kanazawa University, Japan

ISIT 2014 @ Honolulu, USA

Two Well-Studied Channel Models

Binary Symmetric Channels (BSC)

• Each bit is flipped with constant probability p

- Worst-Case (or Adversarial) Channels
 - Only weight of error vectors is restricted

Two Well-Studied Channel Models

Binary Symmetric Channels (BSC)

- Each bit is flipped with constant probability p
- → Introduce errors by simply flipping a coin (Low-cost computation)

- Worst-Case (or Adversarial) Channels
 - Only weight of error vectors is restricted
 - → Introduce errors based on the full knowledge (High-cost computation)

Computationally-Bounded Channels

- Introduced by Lipton (STACS 1994)
- Channels = Polynomial-time bounded algorithms (with error weight restriction)
 - Lie between BSC and Worst-Case Channels
- Related results
 - PKI setting [Micali et al. (TCC 2005)]
 - Without shared randomness or PKI [Guruswami, Smith (FOCS 2010)]

This Work

Introduce "Samplable Additive-Error Channels" as another intermediate model

Investigate the possibilities and limitations for the reliable communication over this channel

Samplable Distributions

- Distribution Z over {0,1}ⁿ is samplable
- ⇔ Exist probabilistic polynomial-time algorithm S s.t. S(1ⁿ) is distributed according to Z

- Related work on samplable distributions
 - Data compression [GS91, Wee04, TVZ05]
 - Randomness extraction [TV00, Vio11, DW12, DRV12, DPW14]

Samplable Additive-Error Channels

Additive channel C^Z: {0,1}ⁿ → {0,1}ⁿ is defined by a samplable distibution Z s.t.

 $C^{Z}(x) = x + z, z \sim Z$

- Error vector z does not depend on x
- Dist. Z does not depend on the code
 - Conversely, the code can depend on Z
- Weight of z is not bounded

Reasons for Introducing This Model

Error distr. is same for every code/codeword

 Error-correction problem is simple

Error distribution is samplable

 Computational constraints on error vectors can help error correction?

 Errors without weight restriction
 → High-weight errors are correctable if they have "nice structure" ?

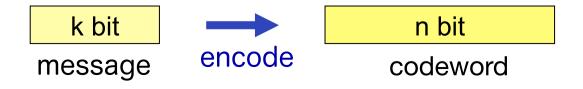
What Z is correctable?

Correctability of Samplable Additive Errors

Use Shannon entropy H(Z) as criterion

$$H(Z) = \mathop{\mathrm{E}}_{z} \left[\log \frac{1}{p_{Z}(z)} \right] = \sum_{z \in \operatorname{supp}(Z)} p_{Z}(z) \log \frac{1}{p_{Z}(z)}$$

- $H(Z) \in [0, n]$ since Z is over $\{0, 1\}^n$
- $H(Z) = 0 \rightarrow easily correctable$
- $H(Z) = n \rightarrow uncorrectable$
- What coding rate R = k/n is achievable?



Observation 1: Z is BSC

Z can simulate BSC

Theorem 1

 \exists Z with H(Z) = n · h(p) (= $\Omega(n)$) uncorrectable for R > 1 – h(p)

Observation 2: Z is pseudo-random

Z is the output of pseudo-random generator,
 Not correctable by poly-time algorithms

Theorem 2

∃ Z with H(Z) ≤ n^ε, 0 < ε < 1,
uncorrectable by polynomial-time algorithms
Assume OWF exists

Observation 3: Z forms a linear subspace

Theorem 3

- ∀ vector in linear space $Z \subseteq \{0,1\}^n$ of dim. m is correctable by a linear code with rate R = 1 m/n
- H(Z) = m
- Decoding is efficient

Proof sketch:

- For basis { z_1 , ..., z_m }, ∃ linear map T : {0,1}ⁿ → {0,1}^m s.t. T(z) = (a_1 , ..., a_m) for \forall error vector z = $\Sigma_i a_i z_i$
- The code = { x : T(x) = 0 }

Observation 4: Z is flat

Theorem 4.1

 \forall flat Z is correctable by linear code with rate R < 1 – m/n – $\Omega(\log(1/\epsilon)/n)$ and error $\epsilon > 0$

•
$$H(Z) = m (|supp(Z)| = 2^m)$$

- Code is not explicitly given
- Proof sketch: Equivalence between linear code ensemble and linear lossless condenser [Cheraghchi (ISIT 2009)]

Theorem 4.2

 \forall flat Z is uncorrectable for rate R ≥ 1 – m/n + O(1/n) and error ε < 1/2 (|supp(Z)| = 2^m)

Proof sketch: Need to divide received word space {0,1}ⁿ into 2^{Rn} disjoint sets each of size (1 – ε)2^m

Observation 5: Uncorrectable Z with low entropy

Theorem 5

 $\forall \omega (\log n) < m < n, \exists \text{ samplable Z with H(Z)} = m$ uncorrectable by "efficient syndrome decoding" for rate R > $\omega ((\log n)/n)$

• Assume "oracle access" to some oracle

Proof sketch:

- ∃ samplable Z with H(Z) = ω(log n) not efficiently compressible to length < n – ω(log n) [Wee (CCC2004)] (Assuming "oracle access")
- Z is compressible to length n(1 R) by linear function
 Z is correctable with rate R by syndrome decoding
 [Cair et al. 2004]

Observation 6: Z is small-biased distribution

- Sample space S ⊆ {0,1}ⁿ is δ-biased
 ⇔ ∀ non-zero a ∈ {0,1}ⁿ, | E_{x~S}[(−1)^{a·x}] | ≤ δ
 - Z is small-biased \Leftrightarrow Indistinguishable from uniform by linear functions

Theorem 6

- \forall Z is uncorrectable for rate R > 1 − Ω(log(1/δ) / n) with error ε < 1/2 if Z is uniform over δ-biased sample space S
- Proof sketch: Z can work as the key of the one-time pad if message has entropy [Dodis, Smith (TCC2005)]

Corollary 6.1

 \exists Z with H(Z) = m uncorrectable for rate R \geq 1 – m/n + O((log n)/n)

Correctability of Samplable Additive Errors (Summary)

H(Z)	Correctability	Assump.	References
0	Efficiently correctable		Trivial
ω(log n)	Efficiently uncorrectable by syndrome decoding for $R > \omega((\log n)/n)$	Oracle access	Theorem 5
n^{ϵ} (0 < ϵ < 1)	Efficiently uncorrectable	OWF	Theorem 2
n•h(p) (0 < p < 1)	Uncorrectable for R > 1 – h(p)		Theorem 1
0 ≤ m ≤ n	\forall linear space Z of dim. m is correctable for $R \le 1 - m/n$		Theorem 3
0 ≤ m ≤ n	\forall flat Z is correctable for R \leq 1 – m/n – $\Omega(\log(1/\epsilon)/n)$		Theorem 4.1
0 ≤ m ≤ n	\forall flat Z is uncorrectable for R > 1 – m/n + O(1/n)		Theorem 4.2
0 ≤ m ≤ n	$\forall \delta$ -biased Z is uncorrectable for R \geq 1 – m/n + O((log n)/n)		Corollary 6.1
n	Uncorrectable		Trivial

Conclusions

Our Results

- Introduce "Samplable Additive-Error Channels"
- Investigate the correctability

Future Work

- Any practical situations captured by this model (with positive results)?
- More positive results (on more restricted Z?)
 - Log-space/constant-depth samplable Z
- Prove without assumptions (OWF, oracle access)
 - Or prove the assumption is necessary