# Perfectly Secure Message Transmission against Independent Rational Adversaries



<u>Kenji Yasunaga</u> (Osaka University, Japan) Takeshi Koshiba (Waseda University, Japan)

GameSec2019@Stockholm

# Cryptography

 Theory of protocols for protecting honest users from malicious adversaries



### **Game Theory**

Theory for analyzing behavior of rational players



### Game Theory in Cryptography

Both crypto and GT analyze behavior of "players"



• Q. What if players behave rationally in protocols?



## Game Theory in Cryptography

• Direction 1: Honest  $\rightarrow$  Rational



■ Direction 2: Malicious → Rational



## Halpern and Teague (STOC'04)

- Target: Secret Sharing
- Direction: Honest  $\rightarrow$  Rational



# Following Work

| Target                         | Direction                        | References                                                          |
|--------------------------------|----------------------------------|---------------------------------------------------------------------|
| Secret Sharing                 | Honest → Rational                | [HT04, GK06, ADGH06,<br>KN08, OPRV09, FKN10,<br>AL11, KOTY17, etc.] |
| Leader Election                | Honest $\rightarrow$ Rational    | [Gra10, ADH13, AGFS14]                                              |
| Public-Key Encryption          | Honest $\rightarrow$ Rational    | [Y16, YY17]                                                         |
| Byzantine Agreement            | Malicious $\rightarrow$ Rational | [GKTZ12]                                                            |
| Multiparty Computation         | Malicious $\rightarrow$ Rational | [ACH16, GK12]                                                       |
| Protocol Design                | Malicious $\rightarrow$ Rational | [GKMTZ13]                                                           |
| Delegated Computation          | Malicious $\rightarrow$ Rational | [AM13,GHRV14,GHRV16]                                                |
| Secure Message<br>Transmission | Malicious → Rational             | [FYK18]                                                             |

**Our Target & Direction** 

Secure Message Transmission (SMT)

- Send messages "securely" and "reliably" through n channels
  - Adversary corrupts t channels



- Secrecy: m is hidden from Adversary
- Reliability: m' = m
- Perfect SMT <> Perfect Secrecy & Reliability

Known Facts of Perfect SMT (PSMT)

Fact 1. ∃1-round PSMT ⇔ t < n/3</p>



• Fact 2.  $\exists$  multi-round PSMT  $\Leftrightarrow$  t < n/2



## **Our Work & Direction**

PSMT against rational adversaries

• Direction: Malicious  $\rightarrow$  Rational



• Q. Can we overcome the existing barriers?

### **Previous Work**

### • Fujita, Yasunaga, Koshiba (GameSec 2018)

• "Timid" adversary, who avoid being detected



 Construct PSMT against a timid adversary corrupting t < n channels</li>

Overcome the PSMT barrier t < n/2

# **This Work**

• PSMT against "multiple" timid adversaries

• All channels can be corrupted

Impossible for malicious adversaries



## **Our Results**

### Construct four PSMT protocols P<sub>1</sub>, P<sub>2</sub>, P<sub>3</sub>, P<sub>4</sub>

|                | Additional<br>Assumption      | t     | # round | Construction Idea                 |
|----------------|-------------------------------|-------|---------|-----------------------------------|
| $P_1$          | Public channel                | < n   | 3       | PSMT of [SJST11]                  |
| P <sub>2</sub> |                               | < n/2 | 1       | CISS of [HK18]                    |
| P <sub>3</sub> | Strictly-timid<br>adversaries | < n   | 1       | P <sub>2</sub> & Punishment       |
| $P_4$          | Mixing of rational/malicious  | < n/6 | 1       | P <sub>2</sub> & Error Correction |

t = # corrupted channels per adversary

CISS = Cheater-Identifiable Secret Sharing

# (t, n) Secret Sharing





Cheater-Identifiable Secret Sharing (CISS)

Identify the cheated shares



• Q. Is CISS a complete solution of PSMT?

# Q. Is CISS a complete solution of PSMT?

- A. No.
  - CISS only guarantees cheater identification
  - PSMT requires recovering the message



# Our Idea for Protocol P<sub>2</sub>

- CISS can work as PSMT if adversaries avoid being detected
  - Being silent is rational (a Nash equilibrium)
  - Use CISS of [HK18] w/ stronger hash functions



# Protocol P<sub>2</sub>

 Theorem: P<sub>2</sub> is PSMT against multiple timid adversaries, each corrupting t < n/2 channels</li>





Q. Can we overcome this barrier?

# Our Idea for Protocol P<sub>3</sub>

### • A. Yes.

 CISS with t ≥ n/2 works as PSMT if adversaries strongly dislike being detected

Avoiding detection is the most important

 Construct (n – 1, n)-type CISS such that if cheating is detected at channel i for share s<sub>j</sub>, then both i & j are punished (regarded cheating)

Strictly timid adversaries will not cheat

### **Protocol P**<sub>3</sub>

 Theorem: P<sub>3</sub> is PSMT against multiple strictlytimid adversaries, each corrupting t < n channels</li>

### Summary of Our Results

|                | Additional<br>Assumption     | t     | # round | Construction Idea                 |
|----------------|------------------------------|-------|---------|-----------------------------------|
| $P_1$          | Public channel               | < N   | 3       | PSMT of [SJST11]                  |
| P <sub>2</sub> |                              | < n/2 | 1       | CISS of [HK18]                    |
| $P_3$          | Strictly-timid adversaries   | < N   | 1       | P <sub>2</sub> & Punishment       |
| $P_4$          | Mixing of rational/malicious | < n/6 | 1       | P <sub>2</sub> & Error Correction |

### Conclusions



### This Work

- Target: PSMT
- Direction: Malicious  $\rightarrow$  Rational
- Feature: All channels can be corrupted

#### Future Work

Further study on mixing rational & malicious

• "Malicious  $\rightarrow$  Rational" for other protocols

# References (1/2)

[ADGH06] Abraham, Dolev, Gonen, Halpern. Distributed computing meets game theory: robust mechanisms for rational secret sharing and multiparty computation. PODC 2006.

[ADH13] Abraham, Dolev, Halpern. Distributed protocols for leader election: A game-theoretic perspective. DISC 2013.

[AGFS14] Afek, Ginzberg, Feibish, Sulamy. Distributed computing building blocks for rational agents. PODC 2014.

[AL11] Asharov, Lindell. Utility dependence in correct and fair rational secret sharing. J. Cryptology, 2011.

[AM13] Azar, Micali. Super-efficient rational proofs. EC '13.

[HT04] Halpern, Teague. Rational secret sharing and multiparty computation: extended abstract. STOC 2004.

[FKN10] Fuchsbauer, Katz, Naccache. Efficient rational secret sharing in standard communication networks. TCC 2010.

[FYK18] Fujita, Yasunaga, Koshiba. Perfectly secure message transmission against rational timid adversaries. GameSec 2018.

[GHRV14] Guo, Hubácek, Rosen, Vald. Rational arguments: single round delegation with sublinear verification. ITCS 2014.

[GHRV16] Guo, Hubácek, Rosen, Vald. Rational sumchecks. TCC (A2) 2016.

# References (2/2)

[GK06] Gordon, Katz. Rational secret sharing, Revisited. SCN 2006.

[GKMTZ13] Garay, Katz, Maurer, Tackmann, Zikas. Rational protocol design: Cryptography against incentive-driven adversaries. FOCS 2013.

[GKTZ12] Groce, Katz, Thiruvengadam, Zikas. Byzantine agreement with a rational adversary. ICALP 2012.

[Gra10] Gradwohl. Rationality in the full-information model. TCC 2010.

[HK18] Hayashi, Koshiba. Universal construction of cheater-identifiable secret sharing against rushing cheaters based on message authentication. ISIT 2018.

[KN08] Kol, Naor. Games for exchanging information. STOC 2008

[KOTY17] Kawachi, Okamoto, Tanaka, Yasunaga. General constructions of rational secret sharing with expected constant-round reconstruction. Comput. J., 2017.

[OPRV09] Ong, Parkes, Rosen, Vadhan. Fairness with an Honest Minority and a Rational Majority. TCC 2009

[SJST11] Shi, Jiang, Safavi-Naini, Tuhin. On optimal secure message transmission by public discussion. IEEE Trans. Information Theory, 2011.

 [Y16] Yasunaga. Public-key encryption with lazy parties. IEICE Transactions, 2016.
[YY17] Yasunaga, Yuzawa. Repeated games for generating randomness in encryption. IEICE Transactions, 2018.

# SMT Game (for Two Adversaries A<sub>1</sub>, A<sub>2</sub>)

- 1. Set suc =  $guess_1 = guess_2 = detect_1 = detect_2 = 0$ .
- 2. Run the SMT protocol for random message m



- suc = 1 if the receiver outputs m
- $guess_1 = 1$  if  $A_1$  outputs m
- $guess_2 = 1$  if  $A_2$  outputs m
- detect<sub>1</sub> = 1 if the protocol detects deviation of A<sub>1</sub>
- $detect_2 = 1$  if the protocol detects deviation of  $A_2$

### **Utility of Timid Adversaries**

 For outcome (suc, guess<sub>1</sub>, guess<sub>2</sub>, detect<sub>1</sub>, detect<sub>2</sub>), adversary A<sub>1</sub> gets higher utility if either

• suc = 0 (rather than suc = 1),  $\checkmark$  Reliability fails

- $guess_1 = 1$  (rather than  $guess_1 = 0$ ),  $\checkmark$  Secrecy fails
- detect<sub>1</sub> = 0 (rather than detect<sub>1</sub> = 1), or  $\checkmark$  Not detected
- detect<sub>2</sub> = 1 (rather than detect<sub>2</sub> = 0)  $\langle A_2$  detected
- "Strictly" timid adversary A<sub>1</sub> gets higher utility if
  - suc = 1 rather than  $detect_1 = 1$



|                | suc | detect <sub>1</sub> | detect <sub>2</sub> |
|----------------|-----|---------------------|---------------------|
| u <sub>1</sub> | 0   | 0                   | 0                   |
| $U_2$          | 1   | 0                   | 0                   |
| U <sub>3</sub> | 0   | 1                   | 1                   |
| $U_4$          | 1   | 1                   | 0                   |

## **Security Definition**

- Protocol  $\pi$  is PSMT against (t<sub>1</sub>, t<sub>2</sub>)-adversaries  $\Leftrightarrow$
- $\exists B_1, B_2$  corrupting  $t_1, t_2$  channels, resp. such that
- 1. Perfect security:  $\pi$  is PSMT against (B<sub>1</sub>, B<sub>2</sub>)
- 2. Nash equilibrium of (B<sub>1</sub>, B<sub>2</sub>):  $\forall A_1, A_2$  corrupting the same channels as B<sub>1</sub>, B<sub>2</sub>,  $U_1(A_1, B_2) \leq U_1(B_1, B_2)$  and  $U_2(B_1, A_2) \leq U_2(B_1, B_2)$

Adversaries have no incentive to deviate from (B<sub>1</sub>, B<sub>2</sub>)

### **Our Protocols**

• Suppose  $A_1$ ,  $A_2$  corrupts  $t_1$ ,  $t_2$  channels, resp.

|       | Additional<br>Assumption    | t <sub>1</sub> | t <sub>2</sub>                  | # round | Construction<br>Idea                 |
|-------|-----------------------------|----------------|---------------------------------|---------|--------------------------------------|
| $P_1$ | Public channel              | < n            | < n                             | 3       | PSMT of<br>[SJST11]                  |
| $P_2$ |                             | < n/2          | < n/2                           | 1       | CISS of [HK18]                       |
| $P_3$ | Strictly-timid adversaries  | < n            | < n                             | 1       | P <sub>2</sub> & Punishment          |
| $P_4$ | A <sub>1</sub> is malicious | < n/3          | < n/3<br>< n/2 – t <sub>1</sub> | 1       | P <sub>2</sub> &<br>Error Correction |

# Protocol P<sub>2</sub>

- $(s_1, ..., s_n)$  : shares of ((n 1)/2, n)-secret sharing for  $m \in \{0, 1\}^s$
- $h_i \in H$  : family of pairwise ind. hash functions  $h_i : \{0,1\}^s \rightarrow \{0,1\}^k$ 
  - h<sub>i</sub>(s<sub>j</sub>) : the authentication tag for s<sub>j</sub> using h<sub>i</sub>
- $r_{i,j} \in \{0,1\}^k$ : random key for encrypting  $h_i(s_j)$ 
  - $T_{i,j} = h_i(s_j) \oplus r_{i,j}$ : encrypted tag for  $s_j$



# Security Proof of P<sub>2</sub>

Theorem. P<sub>2</sub> is PSMT against (t<sub>1</sub>, t<sub>2</sub>)-adversaries with  $t_1, t_2 \in [1, (n - 1)/2], t_1 + t_2 \le n$  if

 $k \ge \log_2((u_1 - u_4)/(u_2 - u_4)) + 2\log_2(n+1) - 1.$ 

Proof:

- (B<sub>1</sub>, B<sub>2</sub>) be the strategy of doing nothing  $\rightarrow$  U<sub>i</sub>(B<sub>1</sub>, B<sub>2</sub>) = u<sub>2</sub>
- P<sub>2</sub> is PSMT against (B<sub>1</sub>, B<sub>2</sub>)
- To get higher utility (than u<sub>2</sub>), A<sub>1</sub> needs either
  - 1. suc = 0

→ Tampering is detected on majority ( $\ge 1 - t_1$ ) lists L<sub>i</sub>

- 2. detect<sub>2</sub> = 1
  - → Impossible due to majority voting &  $t_1 < n/2$

## **Protocol P<sub>3</sub>**

•  $(s_1, ..., s_n)$  : shares of (n - 1, n)-secret sharing for  $m \in \{0, 1\}^s$ 

•  $h_i \in H$ ,  $r_{i,j} \in \{0,1\}^k$ ,  $T_{i,j} = h_i(s_j) \oplus r_{i,j}$  are the same as  $P_2$ 

If T<sub>i,i</sub> verification fails, L<sub>i</sub> includes both i and j



# Security Proof of P<sub>3</sub>

Theorem. P<sub>3</sub> is PSMT against strictly-timid ( $t_1$ ,  $t_2$ )-adversaries with  $t_1$ ,  $t_2 \in [1, n - 1]$ ,  $t_1 + t_2 \leq n$  if

$$k \ge \log_2((u_1 - u_3)/(u_2 - u_3)) - 1.$$

#### Proof:

- (B<sub>1</sub>, B<sub>2</sub>) be the strategy of doing nothing  $\rightarrow$  U<sub>i</sub>(B<sub>1</sub>, B<sub>2</sub>) = u<sub>2</sub>
- P<sub>2</sub> is PSMT against (B<sub>1</sub>, B<sub>2</sub>)
- To get higher utility (than u<sub>2</sub>), A<sub>1</sub> needs either
  - 1. suc = 0

 $\rightarrow$  Tampering is detected w.h.p., implying detect<sub>1</sub> = 1

2. detect<sub>2</sub> = 1

 $\rightarrow$  Also cause detect<sub>1</sub> = 1, which A<sub>1</sub> should avoid

# **Protocol P**<sub>4</sub>

 (s<sub>1</sub>, ..., s<sub>n</sub>) : shares of ((n – 1)/3, n)-secret sharing for m with error-correcting property

- Even if (n 1)/3 shares are erroneous, m is recoverable
- $h_i \in H$ ,  $r_{i,j} \in \{0,1\}^k$ ,  $T_{i,j} = h_i(s_j) \oplus r_{i,j}$  are the same as  $P_2$



# Security Proof of P<sub>4</sub>

Theorem. P<sub>3</sub> is PSMT against  $(t_1, t_2)$ -adversaries with  $t_1 \in [1, (n - 1)/3], t_2 \in [1, \min\{(n - 1)/2 - t_1, (n - 1)/3\}], t_1 + t_2 \le n$ , where A<sub>1</sub> is a malicious adversary, if

 $k \ge \log_2((u_1 - u_4)/(u_2 - u_4)) - 1.$ 

#### Proof:

- B<sub>2</sub> be the strategy of doing nothing
  - Even if  $A_1$  malicious, m can be recovered  $\rightarrow U_2(A_1, B_2) = u_2$
- P<sub>2</sub> is PSMT against (A<sub>1</sub>, B<sub>2</sub>)
- To get higher utility (than u<sub>2</sub>), A<sub>2</sub> needs either
  - 1. suc = 0

→ Tampering is detected on majority ( $\ge 1 - (t_1 + t_2)$ ) lists L<sub>i</sub>

2.  $detect_1 = 1$ 

→ Impossible due to majority voting &  $t_1 + t_2 < n/2$  <sup>33</sup>