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Cryptography

l Theory of protocols for protecting honest users 
from malicious adversaries
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No!



Game Theory

l Theory for analyzing behavior of rational players
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Confess? Confess?

Sure Sure



Game Theory in Cryptography

l Both crypto and GT analyze behavior of “players”

l Q. What if players behave rationally in protocols?
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vs.



Game Theory in Cryptography

l Direction 1: Honest à Rational

l Direction 2: Malicious à Rational
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Resolve 
potential problems

Overcome 
existing barriers



Halpern and Teague (STOC’04)

l Target: Secret Sharing

l Direction: Honest à Rational
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Following Work

Target Direction References
Secret Sharing Honest à Rational [HT04, GK06, ADGH06,

KN08, OPRV09, FKN10, 
AL11, KOTY17, etc.]

Leader Election Honest à Rational [Gra10, ADH13, AGFS14]
Public-Key Encryption Honest à Rational [Y16, YY17]
Byzantine Agreement Malicious à Rational [GKTZ12]
Multiparty Computation Malicious à Rational [ACH16, GK12]
Protocol Design Malicious à Rational [GKMTZ13]
Delegated Computation Malicious à Rational [AM13,GHRV14,GHRV16]
Secure Message  
Transmission

Malicious à Rational [FYK18]
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Our Target & Direction



Secure Message Transmission (SMT)

l Send messages “securely” and “reliably” 
through n channels
l Adversary corrupts t channels

l Secrecy: m is hidden from Adversary
l Reliability: m’ = m

l Perfect SMT ó Perfect Secrecy & Reliability 8
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Known Facts of Perfect SMT (PSMT)

l Fact 1.  ∃1-round PSMT ó t < n/3

l Fact 2. ∃multi-round PSMT ó t < n/2
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Our Work & Direction

l PSMT against rational adversaries
l Direction: Malicious à Rational

l Q. Can we overcome the existing barriers?
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Previous Work

l Fujita, Yasunaga, Koshiba (GameSec 2018)
l “Timid” adversary, who avoid being detected

l Construct PSMT against a timid adversary 
corrupting t < n channels
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Overcome the PSMT barrier t < n/2

Not Detected



This Work

l PSMT against “multiple” timid adversaries

l All channels can be corrupted
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Impossible for malicious adversaries



Our Results

l Construct four PSMT protocols P1, P2, P3, P4
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t  =  # corrupted channels per adversary
CISS = Cheater-Identifiable Secret Sharing

Additional 
Assumption t # round Construction Idea

P1 Public channel < n 3 PSMT of [SJST11]

P2 ― < n/2 1 CISS of [HK18]

P3
Strictly-timid 
adversaries < n 1 P2 & Punishment

P4
Mixing of 

rational/malicious < n/6 1 P2 & Error Correction



(t, n) Secret Sharing

l Generate n shares        from           such that
≤ t shares reveal no information on 
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Cheater-Identifiable Secret Sharing (CISS)

l Identify the cheated shares

l Q. Is CISS a complete solution of PSMT?
15

Detected



Q. Is CISS a complete solution of PSMT?

l A. No.
l CISS only guarantees cheater identification
l PSMT requires recovering the message

16Detected

??

Not guaranteed
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Our Idea for Protocol P2

l CISS can work as PSMT
if adversaries avoid being detected
l Being silent is rational (a Nash equilibrium)
l Use CISS of [HK18] w/ stronger hash functions

Not Detected

1
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Protocol P2

l Theorem: P2 is PSMT against multiple timid 
adversaries, each corrupting t < n/2 channels

l Q. Can we overcome this barrier? 18

∃CISS ó t < n/2
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Our Idea for Protocol P3

l A. Yes.
l CISS with t ≥ n/2 works as PSMT 

if adversaries strongly dislike being detected

l Construct (n – 1, n)-type CISS such that
if cheating is detected at channel i for share sj,
then both i & j are punished (regarded cheating)
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Avoiding detection is the most important

Strictly timid adversaries will not cheat



Protocol P3

l Theorem: P3 is PSMT against multiple strictly-
timid adversaries, each corrupting t < n channels
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Summary of Our Results
Additional 

Assumption t # round Construction Idea

P1 Public channel < n 3 PSMT of [SJST11]

P2 ― < n/2 1 CISS of [HK18]

P3
Strictly-timid 
adversaries < n 1 P2 & Punishment

P4
Mixing of 

rational/malicious < n/6 1 P2 & Error Correction



Conclusions

This Work
l Target: PSMT
l Direction: Malicious à Rational

l Feature: All channels can be corrupted

Future Work
l Further study on mixing rational & malicious
l “Malicious à Rational” for other protocols 21
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SMT Game (for Two Adversaries A1, A2)
1. Set suc = guess1 = guess2 = detect1 = detect2 = 0.
2. Run the SMT protocol for random message m

3. Set
l suc = 1 if the receiver outputs m
l guess1 = 1 if A1 outputs m
l guess2 = 1 if A2 outputs m
l detect1 = 1 if the protocol detects deviation of A1
l detect2 = 1 if the protocol detects deviation of A2
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m

Detected

m’
m1

m2



Utility of Timid Adversaries
l For outcome (suc, guess1, guess2, detect1, detect2), 

adversary A1 gets higher utility if either
l suc = 0 (rather than suc = 1),
l guess1 = 1 (rather than guess1 = 0),
l detect1 = 0 (rather than detect1 = 1), or
l detect2 = 1 (rather than detect2 = 0 )

l “Strictly” timid adversary A1 gets higher utility if
l suc = 1 rather than detect1 = 1
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suc detect1 detect2

u1 0 0 0
u2 1 0 0
u3 0 1 1
u4 1 1 0

u1

u2 u3

u4

(0, 0, 0)

(1, 0, 0)

(1, 1, 0)

Reliability fails
Secrecy fails

Not detected
A2 detected

(0, 1, 1)



Security Definition

Protocol π is PSMT against (t1, t2)-adversaries
ó
∃B1, B2 corrupting t1, t2 channels, resp. such that

1. Perfect security: π is PSMT against (B1, B2)

2. Nash equilibrium of (B1, B2):
∀A1, A2 corrupting the same channels as B1, B2,
U1(A1, B2) ≤ U1(B1, B2) and U2(B1, A2) ≤ U2(B1, B2)
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Adversaries have no incentive to deviate from (B1, B2)



Our Protocols

l Suppose A1, A2 corrupts t1, t2 channels, resp.
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Additional 
Assumption t1 t2 # round Construction 

Idea

P1 Public channel < n < n 3 PSMT of
[SJST11]

P2 ― < n/2 < n/2 1 CISS of [HK18]

P3
Strictly-timid 
adversaries < n < n 1 P2 & Punishment

P4 A1 is malicious < n/3 < n/3
< n/2 – t1

1 P2 & 
Error Correction



Protocol P2

l (s1, …, sn) : shares of ((n – 1)/2, n)-secret sharing for m ∈ {0,1}s

l hi ∈ H : family of pairwise ind. hash functions hi : {0,1}sà{0,1}k

l hi(sj) : the authentication tag for sj using hi

l ri,j ∈ {0,1}k : random key for encrypting hi(sj)
l Ti,j = hi(sj) ⨁ ri,j : encrypted tag for sj
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(s1, h1, T1,2, T1,3, r2,1, r3,1)
(s2, h2, T2,1, T2,3, r1,2, r3,2)
(s3, h3, T3,1, T3,2, r1,3, r2,3)

Tag for s2
= h1(s2) ⨁ r1,2

Tag for s3
= h1(s3) ⨁ r1,3

Keys for 
hiding s1

L1 = { j : h1(sj) ⨁ r1,j ≠ T1,j } 

Authentication failure list 
verified with h1

L2 = { j : h2(sj) ⨁ r2,j ≠ T2,j } 
L3 = { j : h3(sj) ⨁ r3,j ≠ T3,j } 

Majority voting on Li

Final failure list L
Recover m using 
shares { si : i ∉ L }



Security Proof of P2

Proof:
l (B1, B2) be the strategy of doing nothing  à Ui(B1, B2) = u2 

l P2 is PSMT against (B1, B2) 
l To get higher utility (than u2), A1 needs either

1. suc = 0
à Tampering is detected on majority (≥ 1 – t1) lists Li

2. detect2 = 1
à Impossible due to majority voting & t1 < n/2 
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Theorem. P2 is PSMT against (t1, t2)-adversaries with 
t1, t2 ∈ [1, (n – 1)/2], t1 + t2 ≤ n  if

k ≥ log2( (u1 – u4)/(u2 – u4) ) + 2log2(n+1) – 1.



Protocol P3

l (s1, …, sn) : shares of (n – 1, n)-secret sharing for m ∈ {0,1}s

l hi ∈ H, ri,j ∈ {0,1}k , Ti,j = hi(sj) ⨁ ri,j are the same as P2

l If Ti,j verification fails, Li includes both i and j
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(s1, h1, T1,2, T1,3, r2,1, r3,1)
(s2, h2, T2,1, T2,3, r1,2, r3,2)
(s3, h3, T3,1, T3,2, r1,3, r2,3)

Tag for s2
= h1(s2) ⨁ r1,2

Tag for s3
= h1(s3) ⨁ r1,3

Keys for 
hiding s1

L1 = { 1, j : h1(sj) ⨁ r1,j ≠ T1,j } 

Authentication failure list 
verified with T1,j

L2 = { 2, j : h2(sj) ⨁ r2,j ≠ T2,j } 
L3 = { 3, j : h3(sj) ⨁ r3,j ≠ T3,j } 

i is also punished

Union of Li’s
If L = ∅, recover m
Otherwise, output ⊥ L = L1 ∪ L2 ∪ L3



Security Proof of P3

Proof:
l (B1, B2) be the strategy of doing nothing  à Ui(B1, B2) = u2 

l P2 is PSMT against (B1, B2) 
l To get higher utility (than u2), A1 needs either

1. suc = 0
à Tampering is detected w.h.p., implying detect1 = 1

2. detect2 = 1
à Also cause detect1 = 1, which A1 should avoid
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Theorem. P3 is PSMT against strictly-timid (t1, t2)-
adversaries with t1, t2 ∈ [1, n – 1], t1 + t2 ≤ n  if

k ≥ log2( (u1 – u3)/(u2 – u3) ) – 1.



Protocol P4

l (s1, …, sn) : shares of ((n – 1)/3, n)-secret sharing for m
with error-correcting property
l Even if (n – 1)/3 shares are erroneous, m is recoverable

l hi ∈ H, ri,j ∈ {0,1}k , Ti,j = hi(sj) ⨁ ri,j are the same as P2
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(s1, h1, T1,2, T1,3, r2,1, r3,1)
(s2, h2, T2,1, T2,3, r1,2, r3,2)
(s3, h3, T3,1, T3,2, r1,3, r2,3)

Tag for s2
= h1(s2) ⨁ r1,2

Tag for s3
= h1(s3) ⨁ r1,3

Keys for 
hiding s1

L1 = { j : h1(sj) ⨁ r1,j ≠ T1,j } 
L2 = { j : h2(sj) ⨁ r2,j ≠ T2,j } 
L3 = { j : h3(sj) ⨁ r3,j ≠ T3,j } 

Majority voting on Li

Recover m from the received shares

Authentication failure list 
verified with h1

Final failure list L



Security Proof of P4

Proof:

l B2 be the strategy of doing nothing
l Even if A1 malicious, m can be recovered à U2(A1, B2) = u2 

l P2 is PSMT against (A1, B2) 

l To get higher utility (than u2), A2 needs either
1. suc = 0

à Tampering is detected on majority (≥ 1 – (t1 + t2)) lists Li

2. detect1 = 1
à Impossible due to majority voting & t1 + t2 < n/2 33

Theorem. P3 is PSMT against (t1, t2)-adversaries with 
t1∈ [1, (n – 1)/3], t2 ∈ [1, min{(n – 1)/2 – t1, (n – 1)/3}], 
t1 + t2 ≤ n, where A1 is a malicious adversary,  if

k ≥ log2( (u1 – u4)/(u2 – u4) ) – 1.


