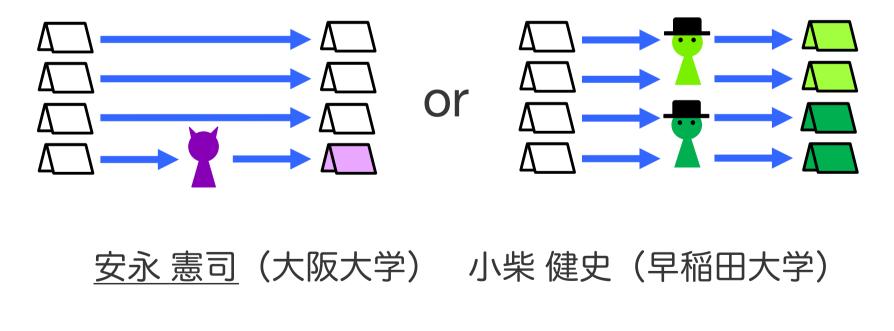
すべての通信路が敵に支配されても ゲーム理論的には安全な通信ができる

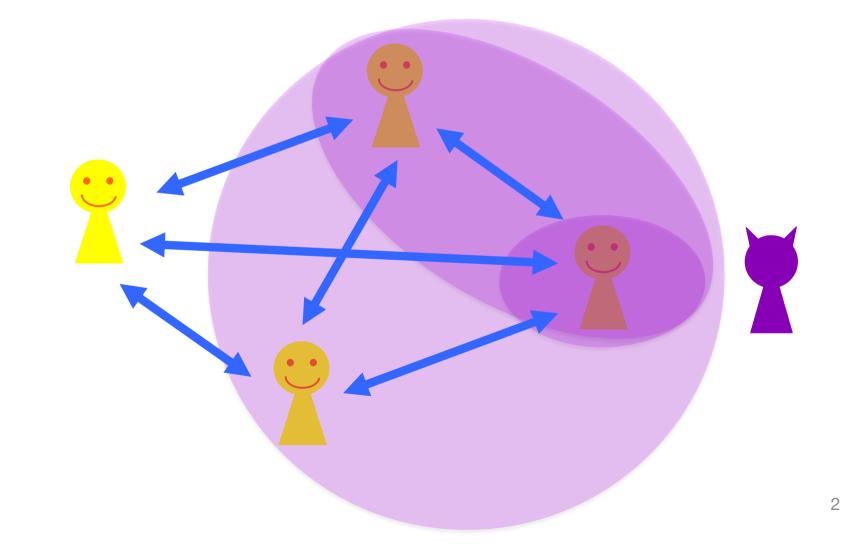
Game-Theoretically Secure Message Transmission against Adversaries who Corrupt All Channels



冬のLAシンポジウム@京都大学数理解析研究所 2020.2.5

Cryptography

Protect honest users from malicious adversaries



Cryptography

Q. What security is achieved if t out of n resources are corrupted?

• Resources = Parties / Channels / etc.

Ex) Typical Results of Crypto Protocols

Resilience	Achieved Security	
t < n/3	Perfect	
t < n/2	Almost Perfect	
t < n	Moderate	

Impression of the Results

Resilience	Achieved Security	
t < n	Moderate	

Secure even if t = n - 1. Optimal!

Protocol Designer

How to guarantee one resource is NEVER corrupted?

System Manager 4

Research Question

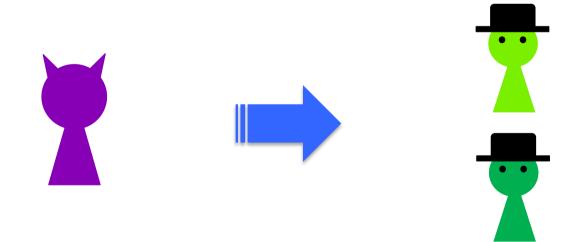
Resilience	Achieved Security		
t < n/3	Perfect		
t < n/2	Almost perfect		
t < n	Moderate		
t = n	No security (?)		

Can we achieve non-trivial security when t = n?

Our Results — Overview

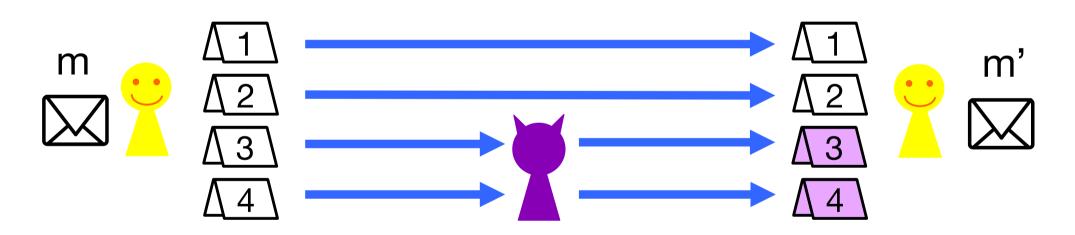
Achieve game-theoretic security when t = n

- Target: Secure Message Transmission (SMT)
- Assumption: There are multiple adversaries who are rational



Secure Message Transmission (SMT)

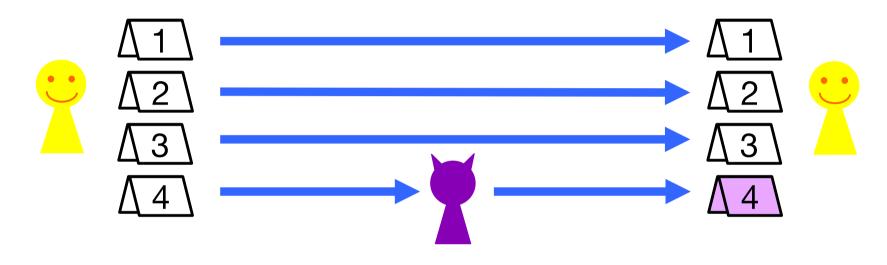
- Send messages "securely" and "reliably" through n channels
 - Adversary corrupts t channels



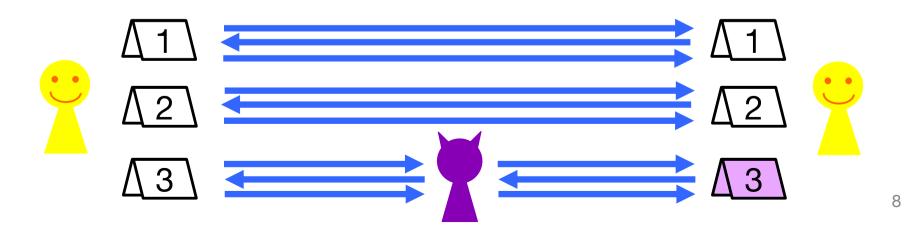
- Secrecy: m is hidden from Adversary
- Reliability: m' = m
- Perfect SMT <> Perfect Secrecy & Reliability 7

Known Facts of Perfect SMT (PSMT)

Fact 1. ∃1-round PSMT ⇔ t < n/3</p>

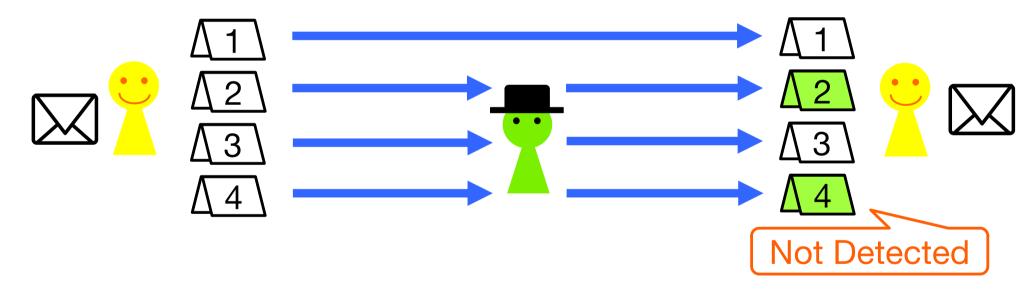


• Fact 2. \exists multi-round PSMT \Leftrightarrow t < n/2



Previous Work on GT security of PSMT

- Fujita, Yasunaga, Koshiba (GameSec 2018)
 - "Timid" adversary, who avoid being detected



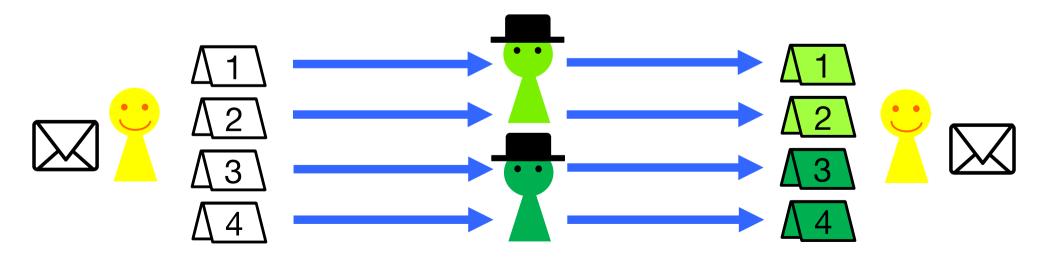
 Construct PSMT against a timid adversary corrupting t < n channels

This Work

• PSMT against multiple timid adversaries

- Each adversary does not cooperate
- All channels can be corrupted

Impossible against a single adversary



Our Results

• Construct three PSMT protocols π_1 , π_2 , π_3

	Additional Assumption	t	# round	Construction Idea
π ₁		< n/2	1	CISS of [Hayashi,Koshiba (2018)]
π ₂	Strictly-timid adversaries	< n	1	π_1 & Punishment
π ₃	Mixing of rational/malicious	< n/6	1	π_1 & Error Correction

t = # corrupted channels per adversaryCISS = Cheater-Identifiable Secret Sharing

GT Security & Adversary's Utility

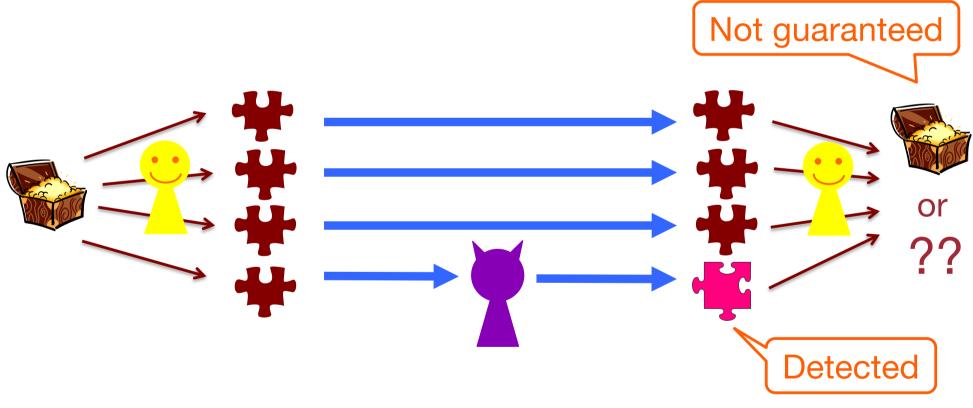
- Game-Theoretic Security:
 - Define SMT game G for rational adversaries
 - Protocol π is GT secure
 ⇔ To "do nothing" is a Nash equilibrium in G

- Utility: Timid adversaries want
 - 1. to violate the security requirements of SMT
 - 2. their actions to be undetected by π
 - 3. other adversaries' actions to be detected

(t, n) Secret Sharing and CISS

(t, n) Secret Sharing: ≤ t shares reveal no info. on

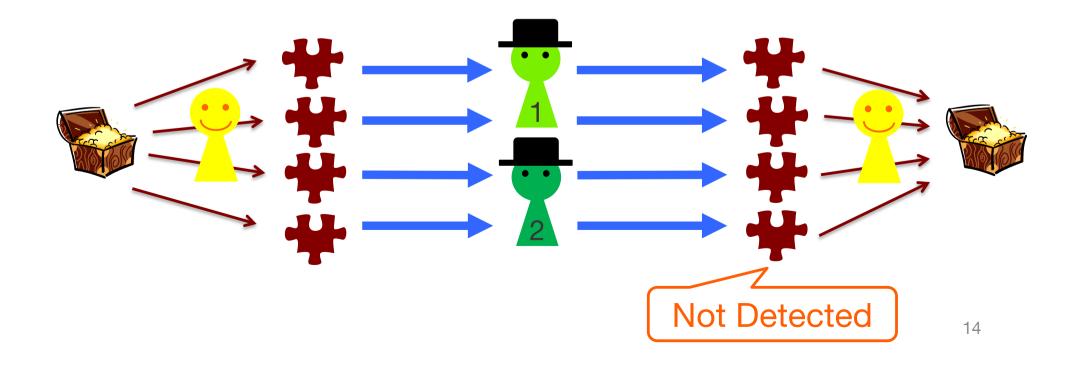
• CISS: SS that can identify the cheated shares



CISS does not imply PSMT

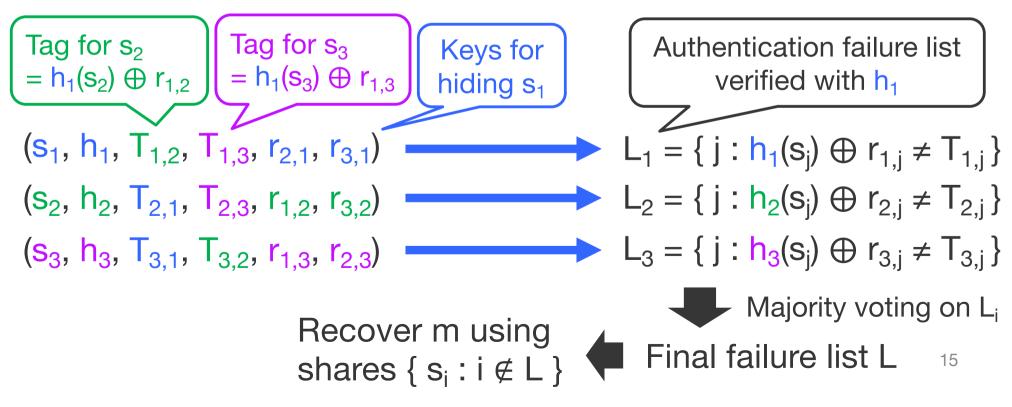
Our Idea for Protocol π_1

- CISS works as PSMT against timid adversaries
 - To do nothing is a Nash equilibrium
 - Use CISS of [HK18] w/ stronger hash functions



Protocol π₁

- $(s_1, ..., s_n)$: shares of ((n 1)/2, n)-secret sharing for $m \in \{0, 1\}^s$
- $H = \{ h_i : \{0,1\}^s \rightarrow \{0,1\}^k \}$: a family of pairwise ind. hash func. h_i
 - h_i(s_j) : the authentication tag for s_j using h_i
- $r_{i,j} \in \{0,1\}^k$: random key for encrypting $h_i(s_j)$
 - $T_{i,j} = h_i(s_j) \oplus r_{i,j}$: encrypted tag for s_j



Security Proof of π_1

Theorem 1. π_1 is PSMT against multiple timid adversaries, each corrupting < n/2 channels by choosing sufficiently large k

Proof sketch:

- Suppose there exist two adversaries A₁ & A₂
- u* = Utility when doing nothing
- To get higher utility than u*, A₁ needs either
 - 1. Violating reliability

→ Detected w.h.p. on majority ($\ge 1 - t$) lists L_i

2. Cheating detection of A₂

 \rightarrow Impossible due to majority voting & t < n/2

Our Idea for Protocol π_2

- Fact: CISS exists ⇔ t < n/2</p>
- CISS can work as PSMT even for t ≥ n/2 against strictly timid adversaries

Avoiding detection is the most important

 Construct (n – 1, n)-type CISS such that if cheating is detected at channel i for share s_j, then both i & j are punished (regarded cheating)

Strictly timid adversaries will not cheat

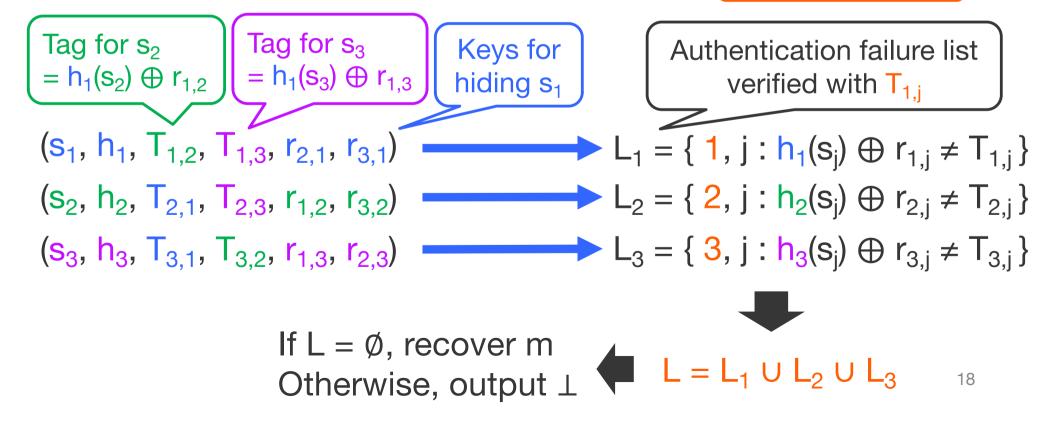
Protocol π_2

• $(s_1, ..., s_n)$: shares of (n - 1, n)-secret sharing for $m \in \{0, 1\}^s$

• $h_i \in H$, $r_{i,j} \in \{0,1\}^k$, $T_{i,j} = h_i(s_j) \oplus r_{i,j}$ are the same as π_1

If T_{i,i} verification fails, L_i includes both i and j

i is also punished



Security Proof of π_2

Theorem 2. π_2 is PSMT against strictly-timid adversaries, each corrupting < n channels by choosing sufficiently large k

Proof sketch:

- Suppose there exist two adversaries A₁ & A₂
- u* = Utility when doing nothing
- To get higher utility than u*, A₁ needs either
 - 1. Violating reliability

 \rightarrow Detected w.h.p., implying cheating detection of A₁

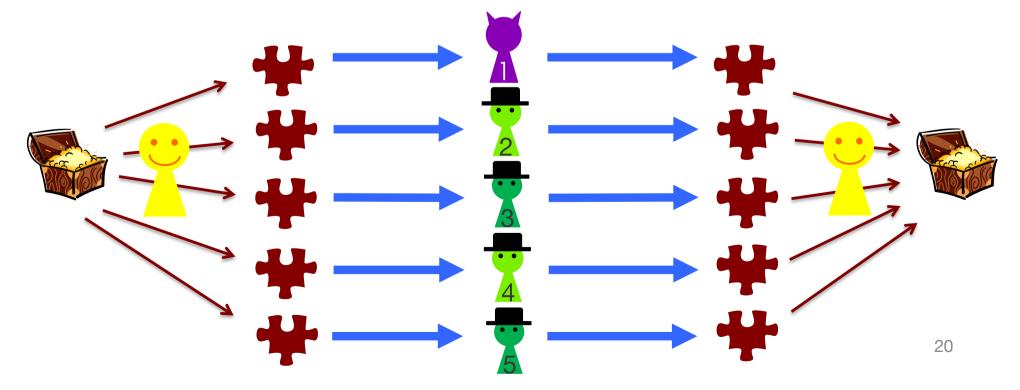
2. Cheating detection of A_2

 \rightarrow Also cause tampering detection of A₁

Our Idea for Protocol π_3

• What if a malicious adversary exists?

- PSMT for t < n/3 : SS with error correction
- Protocol π_1 works as PSMT against malicious A_1 and timid A_i 's if $t_1, t_i < n/3$, $t_1 + t_i < n/2$



Protocol π_3 and Security Proof

Protocol π_3

- $(s_1, ..., s_n)$: shares of ((n 1)/3, n)-SS with error correction
 - Secret recovery even if < (n 1)/3 shares are erroneous
- Other parts are the same as π_1

Theorem 3. π_3 is PSMT against malicious adversary A_1 and timid adversaries A_i , each corrupting t_1 and t_i channels, where t_1 , $t_i < n/3$, $t_1 + t_i < n/2$

Proof sketch:

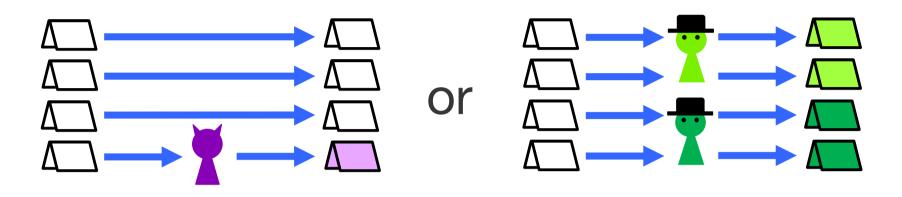
- To get higher utility, timid adversary A_i need either
 - 1. Violating reliability

→ Detected w.h.p. on majority ($\geq 1 - (t_1 + t_i)$) lists L_i

2. Cheating detection of A₂
 → Impossible due to majority voting & t₁ + t_i < n/2

21

Conclusions

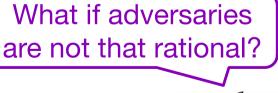


This Work

- GT security of PSMT when t = n
- Assumption: <u>Imultiple timid</u> adversaries
- See [Yasunaga, Koshiba (GameSec 2019)] for details

Future Work

- Stronger GT security (e.g., unique NE)
- GT security of other protocols when t = n



Secure even

if t = n! Wow!

