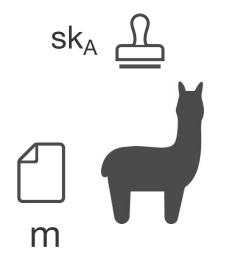
Rational Broadcast Protocols against Timid Adversaries

Keigo Yamashita and Kenji Yasunaga

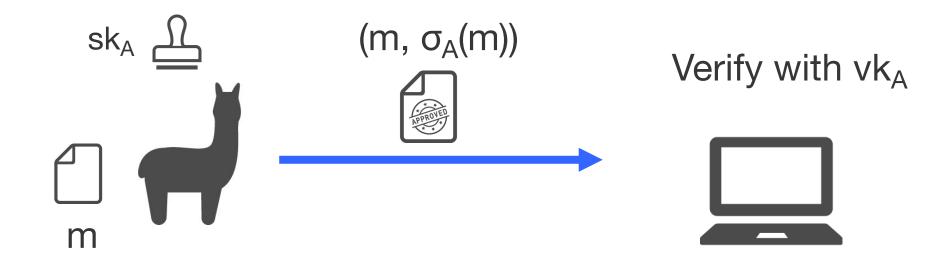
Tokyo Institute of Technology

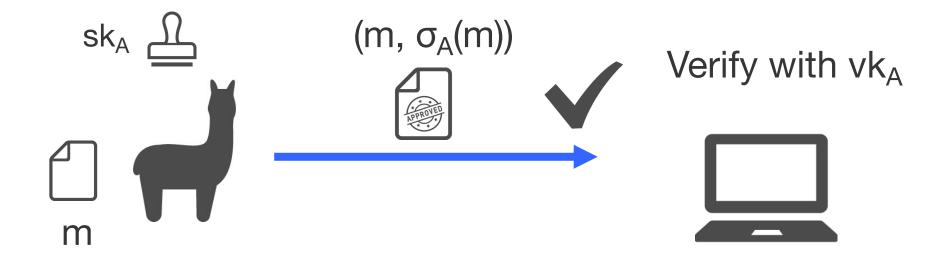
GameSec 2023@Avignon, France Oct 19, 2023

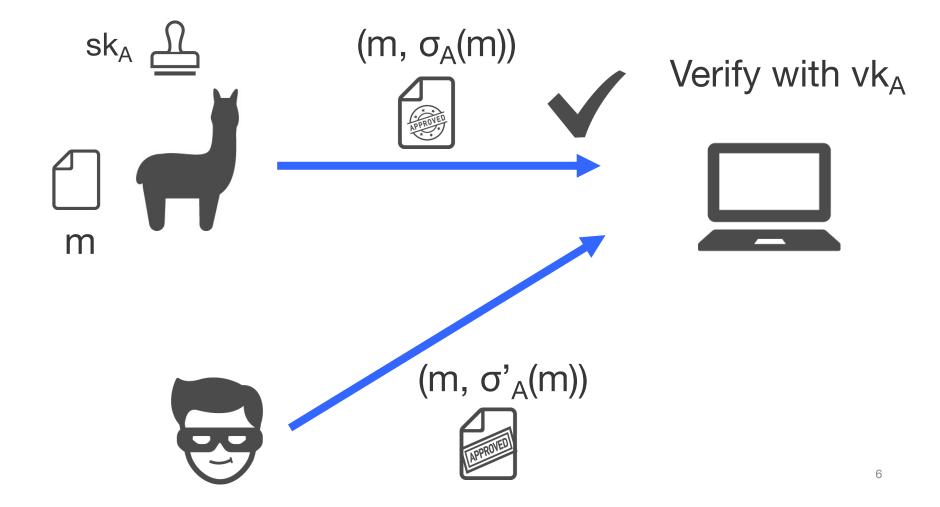
Digital data for verifying the authenticity of messages

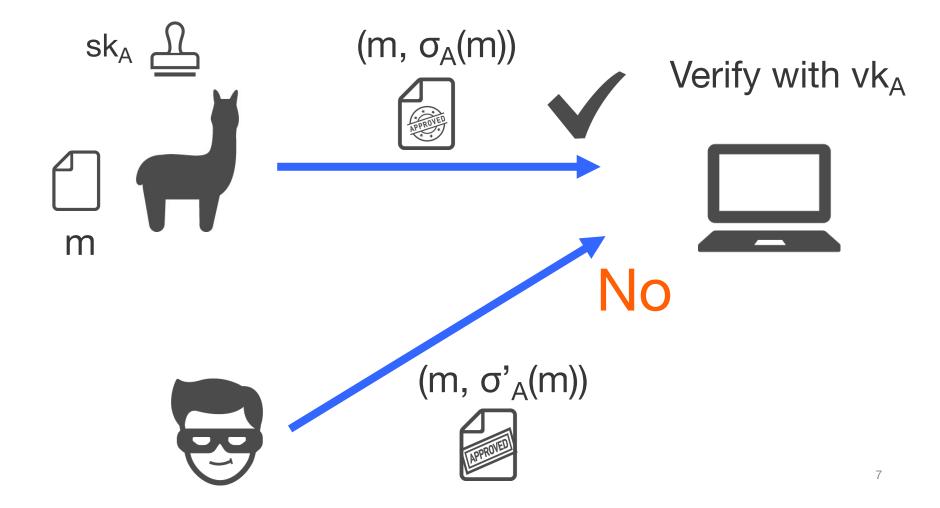


Verify with vk_A







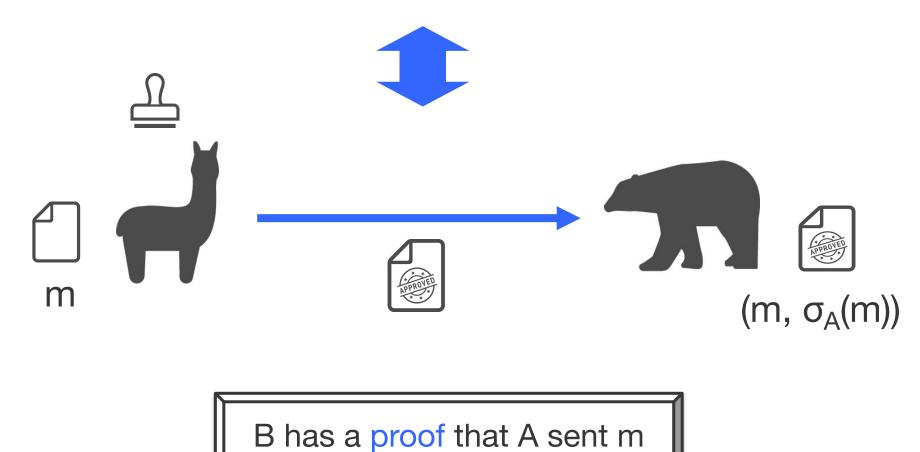


Role of Signature

B has a signature (m, $\sigma_A(m)$) of A

Role of Signature

B has a signature (m, $\sigma_A(m)$) of A

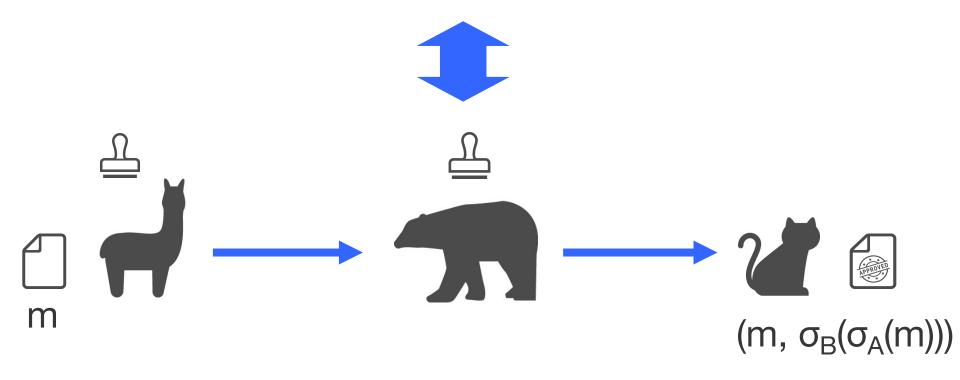


Countersignature

C has a countersignature (m, $\sigma_B(\sigma_A(m))$)

Countersignature

C has a countersignature (m, $\sigma_B(\sigma_A(m)))$

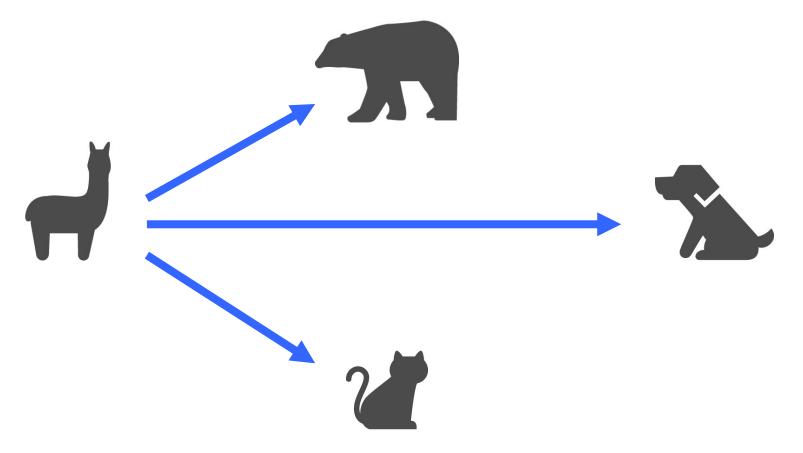


C has a proof that B knows that A sent m

Broadcast Protocols

A sender sends the "same" message to all parties even if the sender is malicious

Building blocks for blockchains/multiparty computation



Broadcast Protocol (Setting & Requirements)

Broadcast Protocol (Setting & Requirements)

<u>Setting</u>

- A set [n] = {1, ..., n} of n parties on secure P2P network
- Adversary can corrupt \leq t parties
- Synchronous communication (3 rounds)
- PKI (Signature) is available (Authenticated setting)

Broadcast Protocol (Setting & Requirements)

<u>Setting</u>

- A set [n] = {1, ..., n} of n parties on secure P2P network
- Adversary can corrupt \leq t parties
- Synchronous communication (3 rounds)
- PKI (Signature) is available (Authenticated setting)

<u>Requirements</u>

- Validity: If a sender s ∈ [n] with input m is honest (= not corrupted), all honest parties output m
- Agreement: All honest parties output the same value

Previous & Our Results on Authenticated Broadcast

Results	Adversary	# Rounds	Resilience	References
terministic BC	Malicious	t+1	t < n	Dolev-Strong (1983)
eterministic BC	Malicious	t	t < n	Dolev-Strong (1983)
ndomized BC	Malicious	29	t < n/2	Katz-Koo (2006)
ndomized BC	Malicious	O(k ²)	t < n/2+k	Garay et al. (2007)
andomized BC	Malicious	o(2n/(n-t))	t < n	Garay et al. (2007)
ndomized BC	Malicious	<mark>2λ+3</mark> w.p. 1-2 ^{-λ}	t < n/2	Micali-Vaikuntanathan (2017)
ndomized BC	Malicious	10	t < n/2	Abraham et al. (2019)
terministic BC	Rational	5	t < n	This Work
		10		Abraham et al. (2019)

Our protocol runs in t+5 rounds for malicious adversaries

Rational adversary tries to maximize utility

Rational adversary tries to maximize utility

Timid adversary prefers to attack the protocol without being detected

Our Protocol

Our Protocol

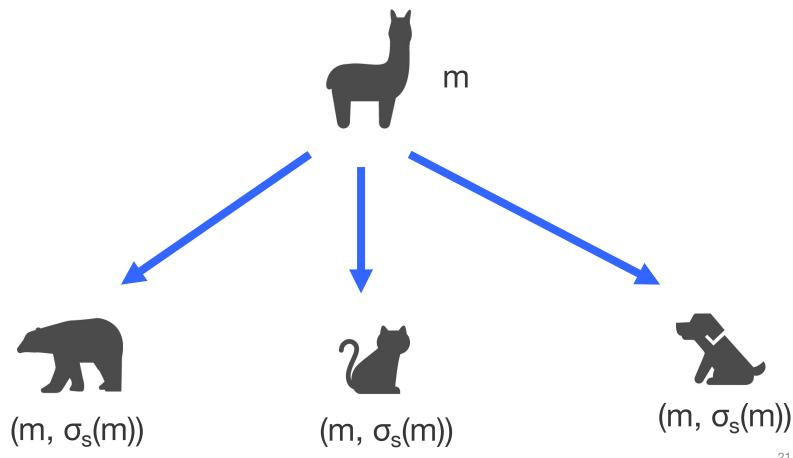
Round 1:

Sender $s \in [n]$ sends (m, $\sigma_s(m)$) to all parties

Our Protocol

Round 1:

Sender $s \in [n]$ sends (m, $\sigma_s(m)$) to all parties



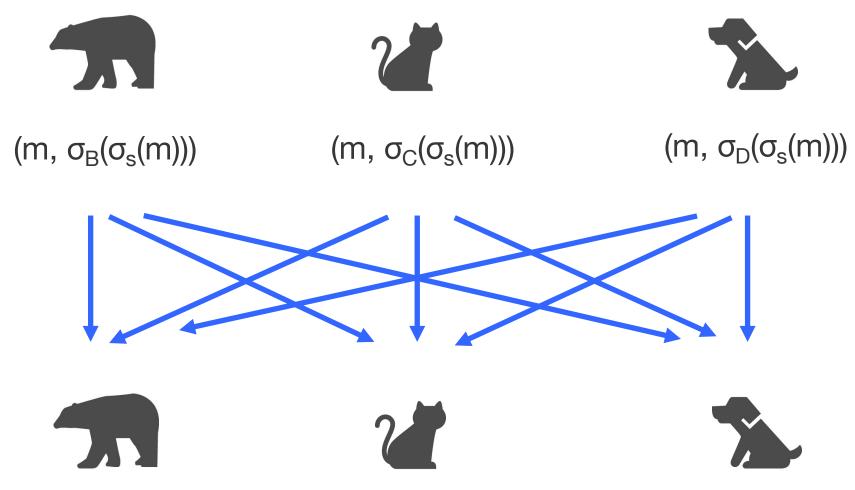
Round 2:

Each i \in [n] sends countersig (m, $\sigma_i(\sigma_s(m))$) to all parties



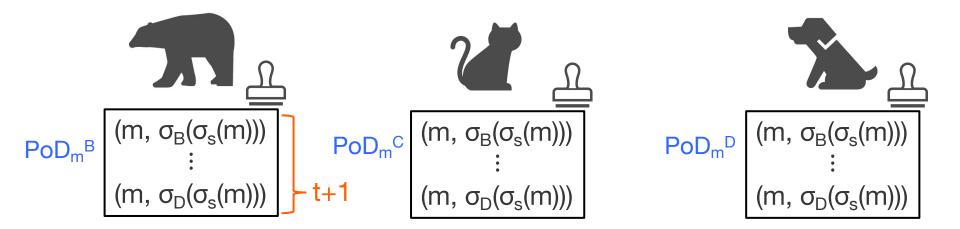
Round 2:

Each i \in [n] sends countersig (m, $\sigma_i(\sigma_s(m))$) to all parties



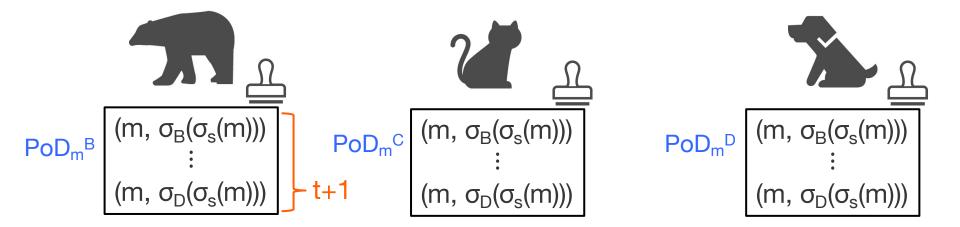
Round 3:

Each i \in [n] collects t+1 valid countersigs to generate a signed "proof of dissemination" (PoD_mⁱ) and sends it to all parties



∃honest party's countersig, which was sent to all parties

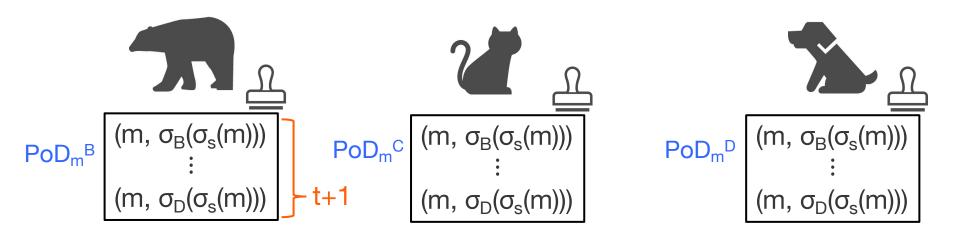
Each i \in [n] collects t+1 valid countersigs to generate a signed "proof of dissemination" (PoD_mⁱ) and sends it to all parties



3honest party's countersig, which was sent to all parties

Each i \in [n] collects t+1 valid countersigs to generate a signed "proof of dissemination" (PoD_mⁱ) and sends it to all parties

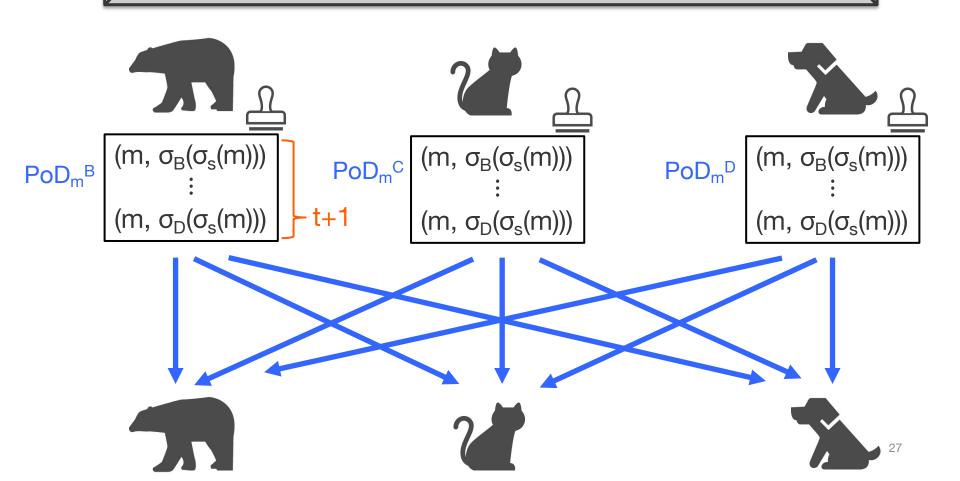
 $PoD_m^{i} = i$ knows that everyone got a countersig for m



∃honest party's countersig, which was sent to all parties

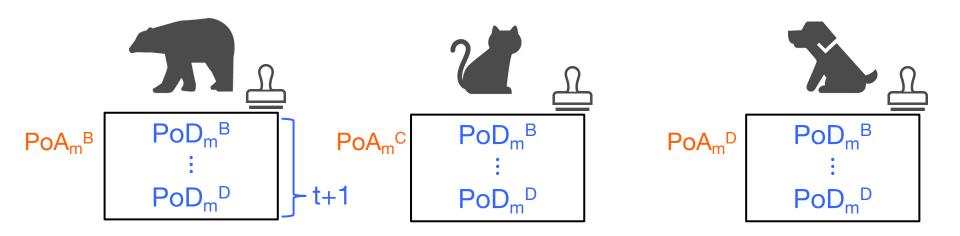
Each i \in [n] collects t+1 valid countersigs to generate a signed "proof of dissemination" (PoD_mⁱ) and sends it to all parties

 $PoD_m^{i} = i$ knows that everyone got a countersig for m



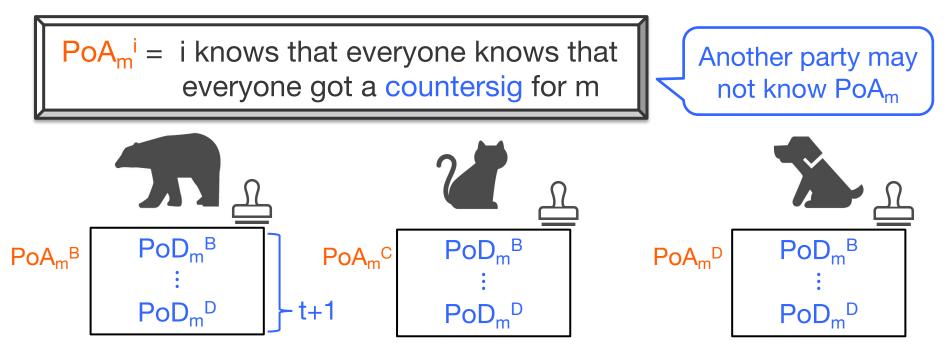
Round 4:

Each i \in [n] collects t+1 valid PoD_m^j to generate a signed "proof of agreement" (PoA_mⁱ) and sends it via Dolev-Strong protocol (If i sees valid PoD_m & PoD_m, for distinct m & m', i does nothing)



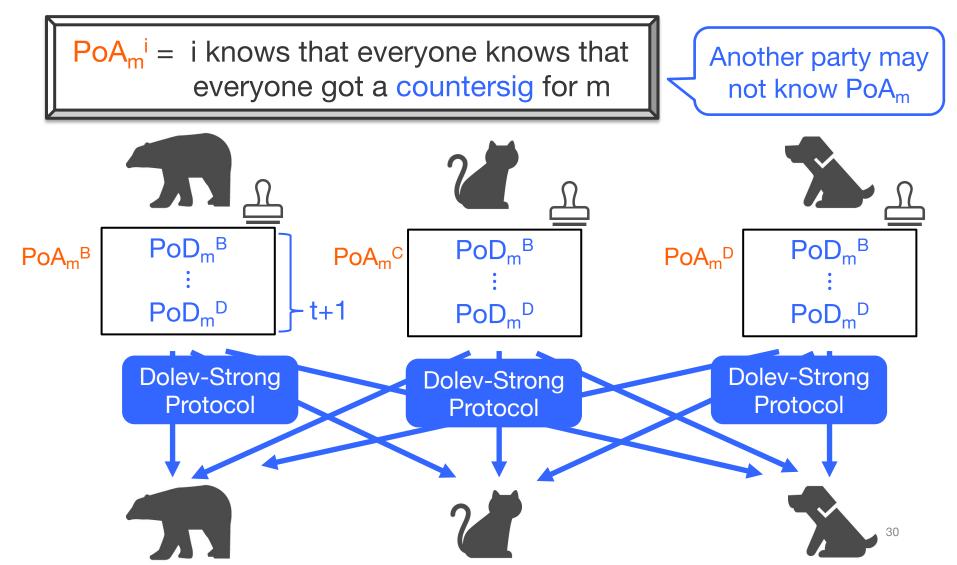
Round 4:

Each i \in [n] collects t+1 valid PoD_m^j to generate a signed "proof of agreement" (PoA_mⁱ) and sends it via Dolev-Strong protocol (If i sees valid PoD_m & PoD_m['], for distinct m & m', i does nothing)



Round 4:

Each i \in [n] collects t+1 valid PoD_m^j to generate a signed "proof of agreement" (PoA_mⁱ) and sends it via Dolev-Strong protocol (If i sees valid PoD_m & PoD_m['], for distinct m & m', i does nothing)



Round 5:

If $i \in [n]$ collects t+1 valid PoA_m^j (= "proof of termination" (PoT)), outputs m and halts.

Otherwise, i continues DS protocol.

Round 5:

If $i \in [n]$ collects t+1 valid PoA_m^j (= "proof of termination" (PoT)), outputs m and halts. Otherwise, i continues DS protocol.

Round t+5:

If DS protocol outputs valid PoA_m, i outputs m.

Otherwise i outputs ⊥ and sends "DETECT s" (s is cheating)

Round 5:

If $i \in [n]$ collects t+1 valid PoA_m^j (= "proof of termination" (PoT)), outputs m and halts. Otherwise, i continues DS protocol.

Round t+5:

If DS protocol outputs valid PoA_m , i outputs m. Otherwise i outputs \perp and sends "DETECT s" (s is cheating)

Key Observations:

No party can obtain $PoA_m \& PoA_{m'}$ for $m \neq m'$ simultaneously (If so, every honest party sees $PoD_m \& PoD_{m'} \rightarrow No PoA$ exists)

- 1. Honest party i output $m \neq \bot \rightarrow i$ obtained PoA_m
- 2. Honest party i output $\perp \rightarrow$ Every honest party failed to get PoA

Theorem

For any adversary corrupting t (< n) parties, our protocol satisfies

- weak validity
- agreement

The protocol finishes in round 5 for timid adversaries

 If finishes in round t+5 (output ⊥), the sender's cheating is detected.

Requirements:

- Weak validity: If a sender s ∈ [n] with input m is honest, all honest parties output m or ⊥
- Agreement: All honest parties output the same value

Proof Overview

1. When violating weak validity:

Sender s with input m is honest & Honest party i output m'(\neq m) \rightarrow i got PoA_m, but s never generates a signature for m'

→ Contradiction

- 2. When violating agreement with $(out_i, out_j) = (m, m'(\neq m))$:
 - \rightarrow i got PoA_m & j got PoA_m \rightarrow Contradicting the observations
- 3. When violating agreement with $(out_i, out_j) = (m, \bot)$: " $out_i = m$ " \rightarrow Honest i got PoA_m " $out_j = \bot$ " \rightarrow Every honest party failed to get PoA **Contradiction**

Discussion (False Detection)

When $t \ge n/2$,

honest sender s may be falsely detected as a cheater

- If t = n/2 parties do nothing, valid PoD cannot be generated
 - \rightarrow Honest party outputs \perp (and s is declared cheating)

When t < n/2, honest sender s can never be detected as a cheater

Conclusions

Construct a 5-round deterministic broadcast protocol against timid adversaries for t < n

- Avoiding DS lower bound by rationality
- Round complexity is t+5 in the worst (malicious) case

Future Work

- Improve the round complexity
- Construct a protocol without false detection for t ≥ n/2 (or prove its impossibility)
- Achieve (standard) validity for $t \ge n/2$

Conclusions

Construct a 5-round deterministic broadcast protocol against timid adversaries for t < n

- Avoiding DS lower bound by rationality
- Round complexity is t+5 in the worst (malicious) case

- Improve the round complexity
- Construct a protocol without false detection for t ≥ n/2 (or prove its impossibility)
- Achieve (standard) validity for $t \ge n/2$

Thank you!

Broadcast Game for protocol Π

- 1. Set incorrect = disagree = undetect = 0
- 2. Adversary A chooses sender $s \in [n]$, message m, corrupted parties $C \subseteq [n]$ with $|C| \leq t$
- Run Π where s is the sender with message m and A controls parties in C
- 4. After running Π, each i ∈ [n] outputs v_i. Let H = [n] \ C.
 If s ∈ H & ∃ i ∈ H s.t. v_i ∉ {m, ⊥}, set incorrect = 1
 If ∃i, j ∈ H s.t. v_i ≠ v_i, set disagree = 1
 If no party sent "DETECT", set undetect = 1
- 5. Outcome is out = (incorrect, disagree, undetect)

Utility of Timid Adversary

- For two outcomes out = (incorr, disag, undet) and out' = (incorr', disag', undet'),
- U(out) > U(out') if incorr > incorr', disag = disag', undet = undet'
- U(out) > U(out') if incorr = incorr', disag > disag', undet = undet'
- 3. U(out) > U(out') if incorr = incorr', disag = disag', undet > undet'
- By definition,

 $\begin{array}{l} U(1,1,1) > max\{ \ U(0,1,1), \ U(1,0,1) \ \} \\ \geq min\{ \ U(0,1,1), \ U(1,0,1) \ \} > U(0,0,1) > U(0,0,0) \end{array}$

Security of Rational Broadcast

Protocol Π is secure against rational t-adversaries with U ⇔

 \exists (harmless) adversary B controlling \leq t parties s.t.

- 1. Security: Π satisfies validity and agreement for B
- 2. Nash equilibrium:

For every A controlling \leq t parties, u(A) \leq u(B).

• u(A) := E[U(out_A)] is the expected value of U(out) for A

Dolev-Strong Protocol

Round 1:

Sender $s \in [n]$ sends (m, $\sigma_s(m)$) to all parties

<u>Round r = 2, ..., t+1:</u>

Each party $i \in [n]$, on receiving $c = (c_1, c_2)$, if c_2 is a (r - 1)-fold valid signature of distinct signers $\neq i$, then sends (c, $\sigma_i(c)$)) to all parties. (Once for each m) Otherwise, i sends nothing.

The end of round t+1:

Let V be the set of values of (t+1)-fold valid signatures. If |V| = 1, output the value in V. Otherwise, output \perp .

> (t+1)-fold valid signature of m = everyone got the proof that s sent m