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Broadcast Protocols

A sender sends the “same” message to all parties
even if the sender is malicious
l Building blocks for blockchains/multiparty computation
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Setting
l A set [n] = {1, …, n} of n parties on secure P2P network
l Adversary can corrupt ≤ t parties 
l Synchronous communication (∃ rounds)
l PKI (Signature) is available (Authenticated setting)
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Broadcast Protocol (Setting & Requirements)

Setting
l A set [n] = {1, …, n} of n parties on secure P2P network
l Adversary can corrupt ≤ t parties 
l Synchronous communication (∃ rounds)
l PKI (Signature) is available (Authenticated setting)

Requirements
l Validity: If a sender s ∈ [n] with input m is honest 

(= not corrupted), all honest parties output m
l Agreement: All honest parties output the same value
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Previous & Our Results on Authenticated Broadcast

References Resilience # Rounds Adversary Results
Dolev-Strong (1983) t < n t+1 Malicious ∃deterministic BC
Dolev-Strong (1983) t < n t Malicious No deterministic BC

Katz-Koo (2006) t < n/2 29 Malicious ∃randomized BC
Garay et al. (2007) t < n/2+k O(k2) Malicious ∃randomized BC
Garay et al. (2007) t < n o(2n/(n-t)) Malicious No randomized BC

Micali-Vaikuntanathan
(2017)

t < n/2 2λ+3 
w.p. 1-2-λ

Malicious ∃randomized BC

Abraham et al. (2019) t < n/2 10 Malicious ∃randomized BC
This Work t < n 5 Rational ∃deterministic BC

Our protocol runs in t+5 rounds for malicious adversaries
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Rational adversary tries to maximize utility
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Rational adversary tries to maximize utility

Timid adversary prefers to attack the protocol
without being detected 
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Our Protocol
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Our Protocol
Round 1:

Sender s ∈ [n] sends (m, σs(m)) to all parties
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Round 2:
Each i ∈ [n] sends countersig (m, σi(σs(m))) to all parties

(m, σB(σs(m))) (m, σC(σs(m))) (m, σD(σs(m)))
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Round 3:
Each i ∈ [n] collects t+1 valid countersigs to generate a signed 
“proof of dissemination” ( PoDm
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Round 4:
Each i ∈ [n] collects t+1 valid PoDm

j to generate a signed 
“proof of agreement” (PoAm

i) and sends it via Dolev-Strong protocol
( If i sees valid PoDm & PoDm’ for distinct m & m’, i does nothing )
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Round 4:
Each i ∈ [n] collects t+1 valid PoDm

j to generate a signed 
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Round 5:
If i ∈ [n] collects t+1 valid PoAmj (= “proof of termination” (PoT)),
outputs m and halts.
Otherwise, i continues DS protocol.
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Round 5:
If i ∈ [n] collects t+1 valid PoAmj (= “proof of termination” (PoT)),
outputs m and halts.
Otherwise, i continues DS protocol.
Round t+5:
If DS protocol outputs valid PoAm, i outputs m.
Otherwise i outputs ⊥ and sends “DETECT s” (s is cheating)
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Round 5:
If i ∈ [n] collects t+1 valid PoAmj (= “proof of termination” (PoT)),
outputs m and halts.
Otherwise, i continues DS protocol.
Round t+5:
If DS protocol outputs valid PoAm, i outputs m.
Otherwise i outputs ⊥ and sends “DETECT s” (s is cheating)

Key Observations:

No party can obtain PoAm & PoAm’ for m ≠ m’ simultaneously
(If so, every honest party sees PoDm & PoDm’ è No PoA exists)

1. Honest party i output m ≠ ⊥è i obtained PoAm

2. Honest party i output ⊥ è Every honest party failed to get PoA
33



For any adversary corrupting t (< n) parties, 
our protocol satisfies
l weak validity
l agreement

The protocol finishes in round 5 for timid adversaries
l If finishes in round t+5 (output ⊥), the sender’s cheating 

is detected.

Theorem

Requirements:
• Weak validity: If a sender s ∈ [n] with input m is honest, 

all honest parties output m or ⊥
• Agreement: All honest parties output the same value
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Proof Overview

1. When violating weak validity:
Sender s with input m is honest & Honest party i output m’(≠ m)
à i got PoAm’, but s never generates a signature for m’

2. When violating agreement with (outi, outj) = (m, m’(≠ m)):
à i got PoAm &  j got PoAm’

3. When violating agreement with (outi, outj) = (m, ⊥):
“outi = m” à Honest i got PoAm

“outj = ⊥”  à Every honest party failed to get PoA
Contradiction

à Contradiction

à Contradicting the observations
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Discussion (False Detection)

When t ≥ n/2, 
honest sender s may be falsely detected as a cheater
l If t = n/2 parties do nothing, valid PoD cannot be generated

à Honest party outputs ⊥ (and s is declared cheating)

When t < n/2, 
honest sender s can never be detected as a cheater
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Conclusions

Construct a 5-round deterministic broadcast protocol 
against timid adversaries for t < n
l Avoiding DS lower bound by rationality
l Round complexity is t+5 in the worst (malicious) case 

Future Work

l Improve the round complexity
l Construct a protocol without false detection 

for t ≥ n/2 (or prove its impossibility)
l Achieve (standard) validity for t ≥ n/2
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Conclusions

Construct a 5-round deterministic broadcast protocol 
against timid adversaries for t < n
l Avoiding DS lower bound by rationality
l Round complexity is t+5 in the worst (malicious) case 

Future Work

l Improve the round complexity
l Construct a protocol without false detection 

for t ≥ n/2 (or prove its impossibility)
l Achieve (standard) validity for t ≥ n/2

Thank you!
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Broadcast Game for protocol Π

1. Set incorrect = disagree = undetect = 0
2. Adversary A chooses sender s ∈ [n], message m, 

corrupted parties C ⊆ [n] with |C| ≤ t

3. Run Π where s is the sender with message m and 
A controls parties in C

4. After running Π, each i ∈ [n] outputs vi. Let H = [n] ∖ C.
If s ∈ H & ∃ i ∈ H s.t. vi ∉ {m, ⊥}, set incorrect = 1
If ∃i, j ∈ H s.t. vi ≠ vi , set disagree = 1
If no party sent “DETECT”, set undetect = 1

5. Outcome is out = (incorrect, disagree, undetect)
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Utility of Timid Adversary

l For two outcomes out = (incorr, disag, undet) and 
out’ = (incorr’, disag’, undet’),

1. U(out) > U(out’) 
if incorr > incorr’, disag = disag’, undet = undet’

2. U(out) > U(out’) 
if incorr = incorr’, disag > disag’, undet = undet’

3. U(out) > U(out’) 
if incorr = incorr’, disag = disag’, undet > undet’

l By definition,
U(1,1,1) > max{ U(0,1,1), U(1,0,1) } 

≥ min{ U(0,1,1), U(1,0,1) } > U(0,0,1) > U(0,0,0)
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Security of Rational Broadcast

Protocol Π is secure against rational t-adversaries with U
ó

∃(harmless) adversary B controlling ≤ t parties s.t.

1. Security: Π satisfies validity and agreement for B
2. Nash equilibrium:

For every A controlling ≤ t parties, u(A) ≤ u(B).
l u(A) := E[ U(outA) ] is the expected value of U(out) for A
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Dolev-Strong Protocol
Round 1:

Sender s ∈ [n] sends (m, σs(m)) to all parties
Round r = 2, …, t+1:

Each party i ∈ [n], on receiving c = (c1, c2), 
if c2 is a (r – 1)-fold valid signature of distinct signers ≠ i, 
then sends (c, σi(c))) to all parties. (Once for each m)
Otherwise, i sends nothing.

The end of round t+1:
Let V be the set of values of (t+1)-fold valid signatures.
If |V| = 1, output the value in V. Otherwise, output ⊥.

(t+1)-fold valid signature of m 
= everyone got the proof that s sent m
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