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Levenshtein distance

n !"($, &) := min { #(ins./del.) to transform $ into & }

l Ex. !" 000, 111 = 6,   !" 101, 010 = 2

n Minimum Levenshtein distance of a code - :

!" - ≔ min23425∈7
!"(28, 29)

n If !" - ≥ !,  - can (uniquely) correct total ;
insertions/deletions for ; < !/2
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List Decoding
n Decoder outputs a small list of codewords 

so that the list contains the transmitted codeword

n Extensively studied in Hamming metric
l ! is (#, ℓ)-list decodable (in Hamming metric)

ó '((), #) ∩ ! ≤ ℓ for any ) ∈ Σ.

l '( ), # : Hamming ball of radius # centered at )
l # :	list decoding radius, ℓ : list size

n Johnson bound gives a bound on list size for # ≥ 2/2
ℓ ≤ 562 if   # < 6 − 6 6 − 2

5 : alphabet size,   2 : minimum distance of ! 4



Our Results
n Johnson-type bound in Levenshtein metric is derived

l The result by Wachter-Zeh (ISIT 2017) has some flaws
l Our bound is obtained by a similar approach

n The bound implies that, as long as ℓ = poly((),
l ∃ binary code of rate Ω(1) correcting 0.707-frac. of insertions; 
l ∀ constant 12 > 0 and 14 ∈ [0,1), ∃8-ary code of rate Ω 1

and 8 = O(1) correcting 12-frac. of ins. and 14-frac. of del.

n Plotkin-type bound on code size in Levenshtein metric
l By a simple application of Johnson-type bound
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List Decoding in Levenshtein metric

n ! is (#$, #&, ℓ)-list decodable

ó ∃ decoder s.t. ∀+ ∈ !, when ≤ #$ insertions 
and ≤ #& deletions occur, the decoder
outputs a list of size ≤ ℓ that contains +

ó ./(0, #&, #$) ∩ ! ≤ ℓ for any 0 ∈ Σ∗
l ./ 0, #&, #$ : the set of words obtained from 
0 by at ≤ #& insertions and ≤ #$ deletions 
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(Main Theorem) Johnson-type Bound

! ⊆ Σ$ s.t. %& ! = %
For non-negative integers (), (+, , ∈ . − (+, . + () ,
and 1 ∈ Σ2, let ℓ ∶= 5&(1, (+, ()) ∩ ! be the maximum
list size when 1 is received.
Let ()9, (+9 be the maximum integers s.t. ()9 − (+9 = , − .,
()9 ≤ (), (+9 ≤ (+

If  ;< > (+9 + >?@($A>B@ )
2 , then  ℓ ≤ 2 C

D A >B
@

2 C
D A >B

@ A>?@($A>B@ )

Theorem 1

(∗)
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Proof Idea
n Let {"#, … , "ℓ} be the set of codewords that can be 

transformed to ( by ≤ *+ insertions and ≤ *, deletions
l W.l.o.g, we assume that every "- can be transformed 

to ( by exactly *+. insertions and *,. deletions

n Consider the value
λ := sum of pairwise distances between ℓ codewords 

n “Double Counting” is applied to λ :
1. Row by row à Lower bound from 01 "-, "2 ≥ 0
2. Column by column à Upper bound from 01 "-, "2 ≤

01 "-, ( + 01 (, "2
l More sophisticated upper bound is used
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Proof of Theorem 1

n For  ! ∈ Σ$,  let  %& !, (), (* ∩ , = {/0,… , /ℓ}
n For each /4, define 5(4) ⊆ 9 = 1,… , 9 and ; 4 ⊆
[=] = {1,… ,=} s.t. /4 can be transformed to ! by 
1. Deleting symbols in 5(4) from /4; and 
2. Inserting symbols in ; 4

l Note that 5 4 = ()? , ; 4 = (*?

/4 !
5(4) ;(4)

=
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n !" can be transformed to !# by
1. Deleting symbols in $(") from !"
2. Inserting symbols in '(") to get (
3. Deleting symbols in '(#) from (
4. Inserting symbols in $(#) to get !#

!" (
$(") '(")

=
!# (

$(#) '(#)
=
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n Steps 2-3 can be simplified as
1. Deleting symbols in !(#) from %#
2. Inserting symbols in &(#) ∖ &(() to get )| + ∖ , - ∩, /

3. Deleting symbols in &(() ∖ &(#) from )| + ∖ , - ∩, /

4. Inserting symbols in !(() to get %(
n Thus, we have that 

01 %#, %( ≤ ! # + & # ∖ &(() + & ( ∖ &(#) + ! (

%# )
!(#) &(#) ∖ &(()

=
%( )

!(() &(() ∖ &(#)
=
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n Define λ ≔ ∑$∈[ℓ] ∑)∈ ℓ ∖{$} -. /$, /)

n We know that
l 1 ≥ ℓ ℓ − 1 - ( by  -. /$, /) ≥ - )

l 1 ≤ ∑$∈[ℓ] ∑)∈ ℓ ∖{$}
6 $ + 8 $ ∖ 8 )

+ 8 ) ∖ 8 $ + 6 )

n Hence, we have

ℓ ℓ − 1 - ≤ ∑$∈[ℓ] ∑)∈ ℓ ∖{$}
6 $ + 8 $ ∖ 8 )

+ 8 ) ∖ 8 $ + 6 )
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n We can show that
l ∑"∈[ℓ] ∑'∈ ℓ ∖{"} + " + + ' = 2(ℓ − 1)∑2∈[3] 42
l ∑"∈[ℓ] ∑'∈ ℓ ∖{"} 5 " ∖ 5 ' + 5 ' ∖ 5 " =
2∑26∈[7] 826(ℓ − 826)

9: ;
+(:) 5(:)

=
9< ;=

9< ;=
� � � �

42 = # > ∈ ℓ ∶ @ ∈ + " 82A = # > ∈ ℓ ∶ @′ ∈ 5 "
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n Thus, we have
ℓ ℓ − 1 $
≤ 2 ℓ − 1 ∑(∈ * +( + 2∑(-∈[/] 1(-(ℓ − 1(-)

n By using ∑(∈ * +( = ℓ567 , ∑(7∈ / 1(7 = ℓ587,
we can show that

ℓ ≤
9 $

2 − 567

9 $
2 − 567 − 587(: − 567 )

l Both the numerator and the denominator are 
positive by the assumption. QED
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Discussion
n NOTE : (∗) is a condition for "#$ and "%$ , not for "# and "%

n We can see that (∗) is equivalent to 

"#$ <
'
2 − "%

$ * − "%$

* − '2
l RHS of (∗∗) is monotonically decreasing on "%$

n Hence, the following (∗∗∗) can be used for bounds on "# and "%

"# <
'
2 − "% * − "%

* − '2

��� (∗∗)

If (∗∗) is satisfied for "#$ = "#, "%$ = "%, 
then (∗∗) is satisfied for all "#$ ≤ "#, "%$ ≤ "%

��� (∗∗∗)

Their upper boundsNumbers of errors

15



Bounds on !" and !#

n Condition (∗∗∗) is equivalent to

l
%&'%(
)

< δ + (./0)232

./4
≔ 6"#(7, 9)

l
%&
)
< (./0)3 (./03)

./4
≔ 6" (7, 9)

l
%(
)
< .'4/ (./4)(:;<=>'./4)

?
≔ 6# 7, 6@AB

where δ ≔ C
?)
, !# ≔ 9 C

?
, !" ≔ 6@ABD

for δ ∈ 0,1 , 9 ∈ 0,1 , 6@AB ≥ 0
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! ⊆ Σ$ s.t. %& ! = %
For non-negative integers (), (+ ∈ 0, .

/
, 0 ∈ 1 − (+, 1 + () ,

let ℓ ∶= max
9∈:;

<&(9, (+, ()) ∩ ! .

Let  @ ≔ .
/$

and (+ ≔ B .
/

for B ∈ [0,1).

If  EFGEH
$

< δ + KLM NON

KLP
= Q)+ @, B , then ℓ ≤ 1 + () %.

Specifically, for any Q)∗ > 0, Q+∗ ∈ [0,1), 
if ∃code with @ ∈ [0,1) satisfying (A), the code is 
(Q)∗1, Q+∗ 1, ℓ)-list decodable for ℓ ≤ 1 + VF

∗

OLVH
∗ LVF

∗.

Q)∗ + Q+∗ < Q)+ @, VH
∗

O ó @ > VF∗GVH∗ (KLVH∗ )
VF∗GKLVH∗

Corollary 1

��� (A)
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Existence of list-decodable codes 

n [Bukh, Guruswami, Hastad (IEEE IT 2017)] : 
∀" ≥ 2, ∃"-ary code of ' ≈ 1 − +

,- , and rate Ω 1
(∃ binary code of ' ≈ 0.414)
à ∃ binary code of rate Ω 1 list-decodable 

0.707-frac. of ins. (or 0.414-frac. of del.)

n [Guruswami, Wang (IEEE IT 2017)] : ∀2 > 0, ∃"-ary
code of ' = 1 − ε, " = 6 ε78 and rate Ω(1)
à ;<∗ > 0, ;>∗ ∈ [0,1), ∃"-ary code of " = 6 1 and

rate Ω 1 list-decodable against 
;<∗-frac. of insertions and ;>∗ -frac. of deletions
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Recent Results
n Efficient encoding and decoding for list-decoding of radius 

approaching !"($, 0) [Hayashi, Yasunaga (arXiv 2018)]
l Concatenated code with outer Reed-Solomon code
l Also, possible for deletion only, but not for both ins. & del.

n [Haeupler, Shahrasbi, Sudan (ICALP 2018)] :
l ∀!" > 0, !* ∈ 0,1 , - > 0, ∃/-ary code of rate 1 − !* − - ,
/ = 2 1 list-decodable for !"-frac. ins. & !*-frac. del.
l Optimal with respect to rate 1 − !* − - and radius (!",!*)

l Efficient encoding and decoding are also presented
l Based on synchronization strings [Haeupler, Shahrasbi

(STOC 2017)]
à / should be large, difficult to construct binary codes
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Plotkin-type Upper Bound on Code Size

! ⊆ Σ$ s.t. %& ! = %

Suppose ∃) ∈ Σ+ that is a supersequence of every , ∈ !. 

If  -
.$
≥ 1 − $

+
,   then  |!| ≤ +-

+-4. +4$ $
.

Theorem 2

Proof. Apply Theorem 1 for 56 = 7 − 8, 5: = 0, and 
the fact that ℓ ∶= max

)∈AB
C&(), 5:, 56) ∩ ! = |!|.  QED

l A trivial supersequence for ) is
)′ = 12⋯J12⋯J⋯⋯12⋯J ∈ [J]M$

l But, Theorem 2 for )′ can be obtained by Plotkin bound in 
Hamming metric and the fact that %N ,O, ,P ≥ %& ,O, ,P /2

è Theorem 2 is effective if non-trivial supsersequence ) exists



Conclusion
n Our results

l Johnson-type bound on list decodability of insertions 
and deletions
l ∃ binary code of rate Ω 1 list-decodable 0.707-frac ins.
l $%∗ > 0, $*∗ ∈ [0,1), ∃.-ary code of . = 0 1 and rate Ω 1

list-decodable against $%∗-frac. Ins. and $*∗ -frac. del.

l Plotkin-type upper bound on code size

n Open problems
l Efficient list-decoding for both insertions & deletions
l Alphabet-size dependent Johnson-type bound
l Plotkin-type bound without assuming supersequence
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