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Levenshtein distance

B d;(x,y) := min { #(ins./del.) to transform x into y }

® Ex. d,(000,111) =6, d,(101,010) = 2

B Minimum Levenshtein distance of a code C :

dy (€)== min d;(cq,c)

C17—'C26C

mIfd,(C) =>d, C can (uniquely) correct total t
insertions/deletions for t < d/2



List Decoding

B Decoder outputs a small list of codewords
so that the list contains the transmitted codeword

B Extensively studied in Hamming metric
® (is (t,¥)-list decodable (in Hamming metric)
& |By(m,t)NnC| < ¢ forany v e 2™

e B,(v,t): Hamming ball of radius t centered at v
e t:list decoding radius, ¥ : list size

B Johnson bound gives a bound on list size fort = d /2

? <gnd Iif t<n—\/n(n—d)

q : alphabet size, d : minimum distance of C



Our Results

B Johnson-type bound in Levenshtein metric is derived
® The result by Wachter-Zeh (ISIT 2017) has some flaws
® Our bound is obtained by a similar approach

B The bound implies that, as long as ¥ = poly(n),
® 3 binary code of rate (1) correcting 0.707-frac. of insertions;

® V constant r; > 0 and 7 € [0,1), 3g-ary code of rate Q(1)
and g = 0(1) correcting t;-frac. of ins. and t-frac. of del.

B Plotkin-type bound on code size in Levenshtein metric
® By a simple application of Johnson-type bound



List Decoding in Levenshtein metric

m Cis (t;, tp,¥)-list decodable

< 3 decoder s.t. Vc € C, when < t; insertions
and < t, deletions occur, the decoder
outputs a list of size < ¢ that contains ¢

& |B(v,tp, t;))NC| < foranyv € &*

® B, (v, tp,t;) : the set of words obtained from
v by at < t, insertions and < t; deletions



(Main Theorem) Johnson-type Bound

Cci"std,(C)=d

For non-negative integers t;,tp, N € [n — tp,n + t;],
andv € IV, let £ := |B, (v, tp, t;) N C| be the maximum
list size when v Is received.

Let t;, t;, be the maximum integers s.t. t; —t, = N —n,
t; < t,tp < tp

then £ < N(g - tl’))
(%) ~ N(3 - th)-ti(n—tp)

!/ I/
ty(n—tp)

d
|f5>tl’)+




Proof Idea

m et {c,,..,c,}be the set of codewords that can be
transformed to v by < t; insertions and < t, deletions

® W.l.o.g, we assume that every c¢; can be transformed
to v by exactly t; insertions and t;, deletions

B Consider the value
A := sum of pairwise distances between £ codewords

B “Double Counting” is applied to A :
1. Row by row = Lower bound from d;(c;, ¢;) = d

2. Column by column = Upper bound from d,(c;, ¢;) <
d(c;,v) +d,(v, )

e More sophisticated upper bound is used



Proof of Theorem 1

mFor velV, let Bi(w,tp t;))NC ={cq,..,Cp}

m For each c;, define D® c [n] ={1,...,n} and E® C
IN] ={1, ..., N} s.t. ¢; can be transformed to v by

1. Deleting symbols in D® from ¢;; and

2. Inserting symbols in E®

D E®

Ci

1
<

e Note that |DW| = ¢}, |[E®| =¢]



DU EW
B c; can be transformed to ¢; by

1. Deleting symbols in D® from ¢;
2. Inserting symbols in E® to get v

3. Deleting symbols in EV) from v

4. Inserting symbols in DY) to get c;
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E®\ EU)

pU) ED\ E®
B Steps 2-3 can be simplified as

1. Deleting symbols in D® from c;

2. Inserting symbols in E® \ EU) to get V| I\ (EDnED)
3. Deleting symbols in EU) \ EW from V| IN\(EDnED))
4. Inserting symbols in DY) to get ¢;

B Thus, we have that
dL(Ci» Cj) < ‘D(i)‘ + ‘E(i) \ E(j)‘+‘E(j) \ E(i)‘+‘D(j)‘ )



B Define A := Yy Zje[{’]\{i} dL(Ci' CJ')

® \We know that
@ 1>/¢(f—1d (by dy(c;c)=d)
‘D(i)l i |E(i) \ E(J')‘
o 1< Zie[f] Zje[f]\{i} +‘E(j) \ E(i)‘+|D(j)‘

B Hence, we have
‘D(i)‘ + ‘E(i) \ E(J')l

(£ —1)d < 2ielt) 2 jefe] {l}( +‘E(]) \E(l)‘+‘DU)‘

)
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m \We can show that
® Zie[f] Zje[{’]\{i}( D(i)‘+‘D(j)D =2({—-1) ZkE[n] Xk

® Licte Zjereniy([EV\EPHEPNED]) =
2 ZRIE[N] Ykl(’g — Yk’)

p@ EM
o — %
c, — %
c, — %
1 I

X, :#{ie[ﬁ]:kED(i)} Y, :#{ie[f]:k'EE(i)} .



B Thus, we have

(£ — 1)d
<28 = 1) Xy Xi + 2 Xpreny Yier (€ = Yier)

B By using Xyepn Xk = ?tp, Zpren) Yer = £t1,
we can show that
d ,
N(3 — th)

(5 - ) -t

® Both the numerator and the denominator are
positive by the assumption. QED
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Discussion

B NOTE : () is a condition for t; and tp, not for t; and ¢t

Numbers of errors Their upper bounds
B We can see that () is equivalent to
d
,_(z-t) (- tp)
t; < o oo (%%)
_d
nT2

® RHS of (x*) is monotonically decreasing on ty,

» If (xx) is satisfied for t; = ¢t;, t;, = tp,
then (xx) is satisfied for all t; < t;, t;, < tp

B Hence, the following (x**) can be used for bounds on t; and t,

(% - tD) (n—tp)

_d
n 5 15

t; < o oo (Hxx)



Bounds on t; and tj

B Condition () is equivalent to

2 Q2
o L < 5+ = 1p(8, )

1-p)6 (1—pdb
‘;I<( p)l(sp)_TI(Sp)
tr  1+6—/(1-8)(4Tjne+1-5
‘f < i )2( - ). = TD(5 TIHS)

d d
where 6 = S lp =P (5), t; == TipsN
for 56 € 10,1),p € [0,1),Tjys = 0
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2.5
Unique decoding
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Corollary 1

For non-negative integers t;, t, € [O, %) ,N € |n—tp,n+t],
let £ := maxlBL(v, tp,t;) N CJ.
2‘.

Let 6 .= — and ¢, -=p( )forpe[01)

2n
(1- p)252
-8

SpeC|f|caIIy, forany t; > 0,7, € [0,1),
if Acode with § € [0,1) satisfying (A), the code is

(t/n,tpn, £)-list decodable for £ < 1 + °1

t[+tD

If <0+

=1,5(6,p),then £ < (n + t;)d.

* *x "
5_TD_TI

% % Tp TI+TD(1 TD)
TI+TD<TID(5 5)<:>5> TI+1 TD . . .(A)
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Existence of list-decodable codes

B [Bukh, Guruswami, Hastad (IEEE IT 2017)] :
2
Vg = 2,3g-ary code of § = 1 — oy and rate Q.(1)
(3 binary code of § = 0.414)

- 3 binary code of rate Q(1) list-decodable
0.707-frac. of ins. (or 0.414-frac. of del.)

B [Guruswami, Wang (IEEE IT 2017)] : Ve > 0,3qg-ary
codeof § =1—¢, g =0(¢3) and rate Q(1)

- 1; > 0,75 €[0,1), 3g-ary code of g = 0(1) and
rate (1) list-decodable against
7, -frac. of insertions and 7, -frac. of deletions
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Recent Results

m Efficient encoding and decoding for list-decoding of radius
approaching t,(d, 0) [Hayashi, Yasunaga (arXiv 2018)]

® (Concatenated code with outer Reed-Solomon code
® Also, possible for deletion only, but not for both ins. & del.

B [Haeupler, Shahrasbi, Sudan (ICALP 2018)] :

® Vi, >0, 7, € (0,1), e >0, Jg-ary code ofrate 1 — 1, — ¢,
q = 0(1) list-decodable for t,-frac. ins. & 7-frac. del.

e Optimal with respect to rate 1 — 7, — ¢ and radius (7;7p)
® Efficient encoding and decoding are also presented

® Based on synchronization strings [Haeupler, Shahrasbi
(STOC 2017)]

- g should be large, difficult to construct binary codes
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Plotkin-type Upper Bound on Code Size

Suppose v € 2V that is a supersequence of every ¢ € C.

f £>1-2 then |C| < —=
2n N Nd-2(N-n)n

Proof. Apply Theorem 1 fort; = N —n,t; = 0, and
the fact that ¢ := m%%IBL(v, tp,t;)) NC|=|C|. QED
A4S

® A trivial supersequence for v is
v =12--ql2--q - 12 q € [q]I"

® But, Theorem 2 for v’ can be obtained by Plotkin bound in
Hamming metric and the fact that dy(c;, ¢j) = d;(c;, ¢;)/2

= Theorem 2 is effective if non-trivial supsersequence v exists



Conclusion

B Our results

® Johnson-type bound on list decodability of insertions
and deletions

e 1 binary code of rate (1) list-decodable 0.707-frac ins.

e 1; >0,7, € [0,1), Ig-ary code of g = 0(1) and rate Q(1)
list-decodable against t,-frac. Ins. and t,-frac. del.

® Plotkin-type upper bound on code size

B Open problems
® Efficient list-decoding for both insertions & deletions
® Alphabet-size dependent Johnson-type bound

® Plotkin-type bound without assuming superseqguence
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