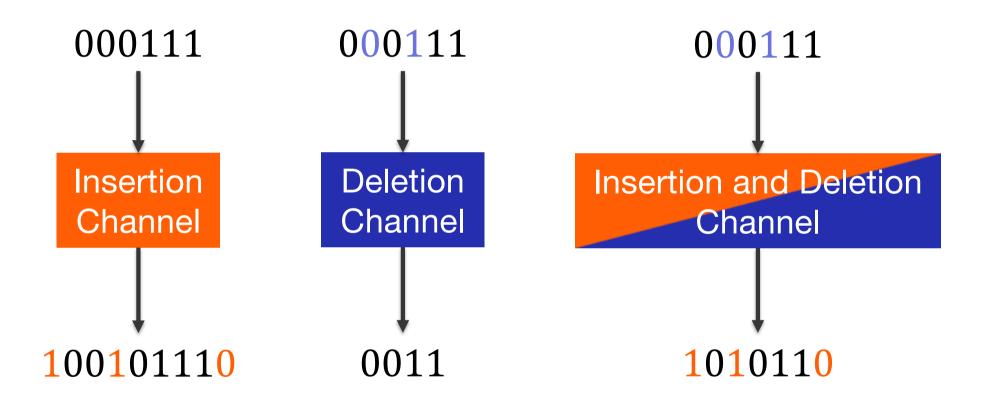
# 挿入と削除に対するリスト復号

### 安永憲司 (大阪大学)

### 林智弘(金沢大学)との共同研究

第7回誤り訂正符号のワークショップ@盛岡市清温荘 2018.9.3

## **Insertions and Deletions**



## Levenshtein distance

■  $d_L(x, y) := \min \{ \#(\text{ins./del.}) \text{ to transform } x \text{ into } y \}$ 

• Ex. 
$$d_L(000, 111) = 6$$
,  $d_L(101, 010) = 2$ 

Minimum Levenshtein distance of a code C :

$$d_L(C) \coloneqq \min_{\boldsymbol{c}_1 \neq \boldsymbol{c}_2 \in C} d_L(\boldsymbol{c}_1, \boldsymbol{c}_2)$$

If  $d_L(C) \ge d$ , C can (uniquely) correct total t insertions/deletions for t < d/2

# List Decoding

- Decoder outputs a *small* list of codewords so that the list contains the transmitted codeword
- Extensively studied in Hamming metric
  - C is  $(t, \ell)$ -list decodable (in Hamming metric)  $\Leftrightarrow |B_H(v, t) \cap C| \le \ell$  for any  $v \in \Sigma^n$ 
    - $B_H(v, t)$ : Hamming ball of radius t centered at v
    - t: list decoding radius,  $\ell$ : list size

■ Johnson bound gives a bound on list size for  $t \ge d/2$ 

$$\ell \le qnd$$
 if  $t < n - \sqrt{n(n-d)}$ 

q : alphabet size, d : minimum distance of C

## **Our Results**

- Johnson-type bound in Levenshtein metric is derived
  - The result by Wachter-Zeh (ISIT 2017) has some flaws
  - Our bound is obtained by a similar approach
- The bound implies that, as long as  $\ell = poly(n)$ ,
  - $\exists$  binary code of rate  $\Omega(1)$  correcting 0.707-frac. of insertions;
  - $\forall$  constant  $\tau_I > 0$  and  $\tau_D \in [0,1)$ ,  $\exists q$ -ary code of rate  $\Omega(1)$  and q = O(1) correcting  $\tau_I$ -frac. of ins. and  $\tau_D$ -frac. of del.
- Plotkin-type bound on code size in Levenshtein metric
  - By a simple application of Johnson-type bound

List Decoding in Levenshtein metric

### C is $(t_I, t_D, \ell)$ -list decodable

- $\Leftrightarrow \exists \text{ decoder s.t. } \forall c \in C, \text{ when } \leq t_I \text{ insertions} \\ \text{and } \leq t_D \text{ deletions occur, the decoder} \\ \text{outputs a list of size } \leq \ell \text{ that contains } c$
- $\Leftrightarrow |B_L(\boldsymbol{v}, t_D, t_I) \cap C| \leq \ell \text{ for any } \boldsymbol{v} \in \Sigma^*$ 
  - $B_L(v, t_D, t_I)$ : the set of words obtained from v by at  $\leq t_D$  insertions and  $\leq t_I$  deletions

# (Main Theorem) Johnson-type Bound

### Theorem 1

 $C \subseteq \Sigma^{n} \text{ s.t. } d_{L}(C) = d$ For non-negative integers  $t_{I}, t_{D}, N \in [n - t_{D}, n + t_{I}]$ , and  $v \in \Sigma^{N}$ , let  $\ell := |B_{L}(v, t_{D}, t_{I}) \cap C|$  be the maximum list size when v is received. Let  $t'_{I}, t'_{D}$  be the maximum integers s.t.  $t'_{I} - t'_{D} = N - n$ ,  $t'_{I} \leq t_{I}, t'_{D} \leq t_{D}$ 

If 
$$\frac{d}{2} > t'_D + \frac{t'_I(n-t'_D)}{N}$$
, then  $\ell \le \frac{N(\frac{1}{2} - t_D)}{N(\frac{d}{2} - t'_D) - t'_I(n-t'_D)}$ 

# Proof Idea

- Let  $\{c_1, ..., c_\ell\}$  be the set of codewords that can be transformed to v by  $\leq t_I$  insertions and  $\leq t_D$  deletions
  - W.I.o.g, we assume that every  $c_i$  can be transformed to v by exactly  $t'_i$  insertions and  $t'_D$  deletions
- Consider the value

 $\lambda :=$  sum of pairwise distances between  $\ell$  codewords

- "Double Counting" is applied to  $\lambda$ :
  - 1. Row by row  $\rightarrow$  Lower bound from  $d_L(c_i, c_j) \ge d$
  - 2. Column by column  $\rightarrow$  Upper bound from  $d_L(c_i, c_j) \leq d_L(c_i, v) + d_L(v, c_j)$ 
    - More sophisticated upper bound is used

# Proof of Theorem 1

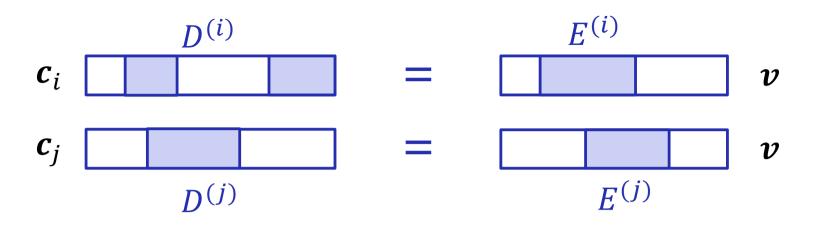
For  $\boldsymbol{v} \in \Sigma^N$ , let  $B_L(\boldsymbol{v}, t_D, t_I) \cap C = \{\boldsymbol{c}_1, \dots, \boldsymbol{c}_\ell\}$ 

For each  $c_i$ , define  $D^{(i)} \subseteq [n] = \{1, ..., n\}$  and  $E^{(i)} \subseteq [N] = \{1, ..., N\}$  s.t.  $c_i$  can be transformed to v by

- 1. Deleting symbols in  $D^{(i)}$  from  $c_i$ ; and
- 2. Inserting symbols in  $E^{(i)}$

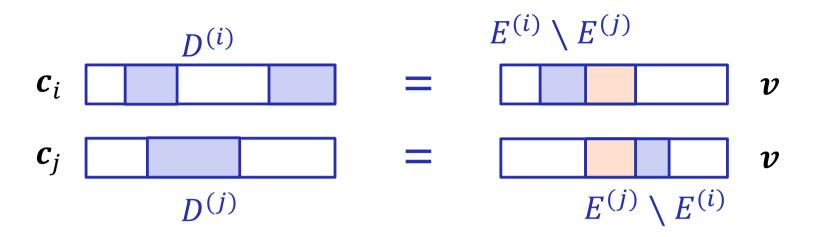


• Note that  $|D^{(i)}| = t'_D$ ,  $|E^{(i)}| = t'_I$ 



 $\bullet$  *c<sub>i</sub>* can be transformed to *c<sub>j</sub>* by

- 1. Deleting symbols in  $D^{(i)}$  from  $c_i$
- 2. Inserting symbols in  $E^{(i)}$  to get v
- 3. Deleting symbols in  $E^{(j)}$  from v
- 4. Inserting symbols in  $D^{(j)}$  to get  $c_j$



Steps 2-3 can be simplified as

- 1. Deleting symbols in  $D^{(i)}$  from  $c_i$
- 2. Inserting symbols in  $E^{(i)} \setminus E^{(j)}$  to get  $v_{|[N] \setminus (E^{(i)} \cap E^{(j)})}$
- 3. Deleting symbols in  $E^{(j)} \setminus E^{(i)}$  from  $v_{|[N] \setminus (E^{(i)} \cap E^{(j)})}$
- 4. Inserting symbols in  $D^{(j)}$  to get  $c_j$
- Thus, we have that

 $d_L(\mathbf{c}_i, \mathbf{c}_j) \le |D^{(i)}| + |E^{(i)} \setminus E^{(j)}| + |E^{(j)} \setminus E^{(i)}| + |D^{(j)}|_{11}$ 

• Define 
$$\lambda \coloneqq \sum_{i \in [\ell]} \sum_{j \in [\ell] \setminus \{i\}} d_L(\boldsymbol{c}_i, \boldsymbol{c}_j)$$

We know that

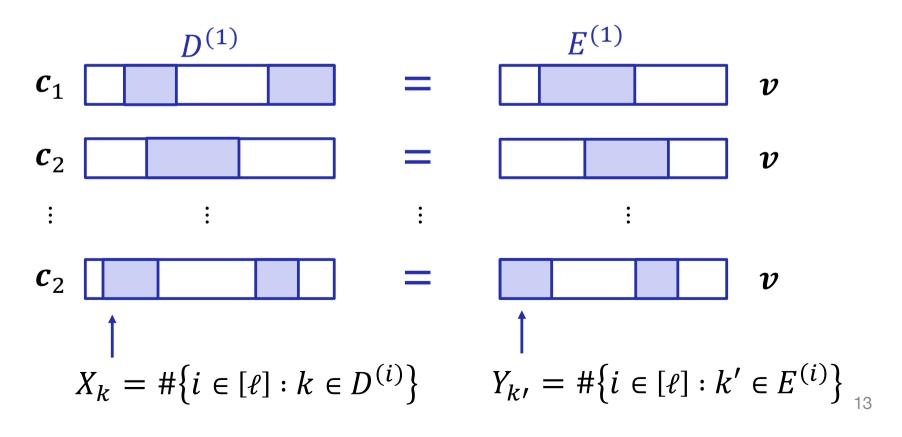
• 
$$\lambda \geq \ell(\ell-1)d$$
 (by  $d_L(c_i, c_j) \geq d$ )  
•  $\lambda \leq \sum_{i \in [\ell]} \sum_{j \in [\ell] \setminus \{i\}} \binom{|D^{(i)}| + |E^{(i)} \setminus E^{(j)}|}{+ |E^{(j)} \setminus E^{(i)}| + |D^{(j)}|}$ 

Hence, we have

$$\ell(\ell-1)d \le \sum_{i \in [\ell]} \sum_{j \in [\ell] \setminus \{i\}} \binom{|D^{(i)}| + |E^{(i)} \setminus E^{(j)}|}{+ |E^{(j)} \setminus E^{(i)}| + |D^{(j)}|}$$

### We can show that

- $\sum_{i \in [\ell]} \sum_{j \in [\ell] \setminus \{i\}} \left( \left| D^{(i)} \right| + \left| D^{(j)} \right| \right) = 2(\ell 1) \sum_{k \in [n]} X_k$
- $\sum_{i \in [\ell]} \sum_{j \in [\ell] \setminus \{i\}} \left( \left| E^{(i)} \setminus E^{(j)} \right| + \left| E^{(j)} \setminus E^{(i)} \right| \right) = 2\sum_{k' \in [N]} Y_{k'} (\ell Y_{k'})$



# Thus, we have $\begin{array}{l} \ell(\ell-1)d \\ \leq 2(\ell-1)\sum_{k\in[n]}X_k + 2\sum_{k'\in[N]}Y_{k'}(\ell-Y_{k'}) \end{array} \end{array}$

By using 
$$\sum_{k \in [n]} X_k = \ell t'_D$$
,  $\sum_{k' \in [N]} Y_{k'} = \ell t'_I$ , we can show that

$$\ell \leq \frac{N\left(\frac{d}{2} - t'_{D}\right)}{N\left(\frac{d}{2} - t'_{D}\right) - t'_{I}(n - t'_{D})}$$

Both the numerator and the denominator are positive by the assumption.

## Discussion

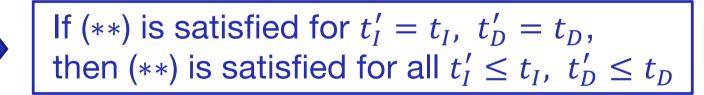
**NOTE** : (\*) is a condition for  $t'_I$  and  $t'_D$ , not for  $t_I$  and  $t_D$ 

Numbers of errors Their upper bounds

We can see that (\*) is equivalent to

$$t'_{I} < \frac{\left(\frac{d}{2} - t'_{D}\right)(n - t'_{D})}{n - \frac{d}{2}} \qquad \bullet \quad \bullet \quad (**)$$

• RHS of (\*\*) is monotonically decreasing on  $t'_D$ 

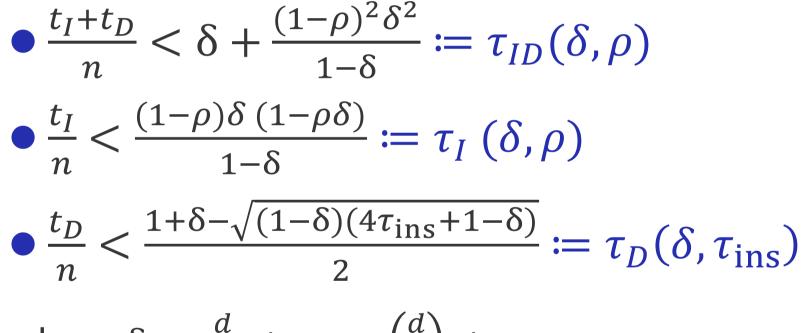


Hence, the following (\*\*\*) can be used for bounds on  $t_I$  and  $t_D$ 

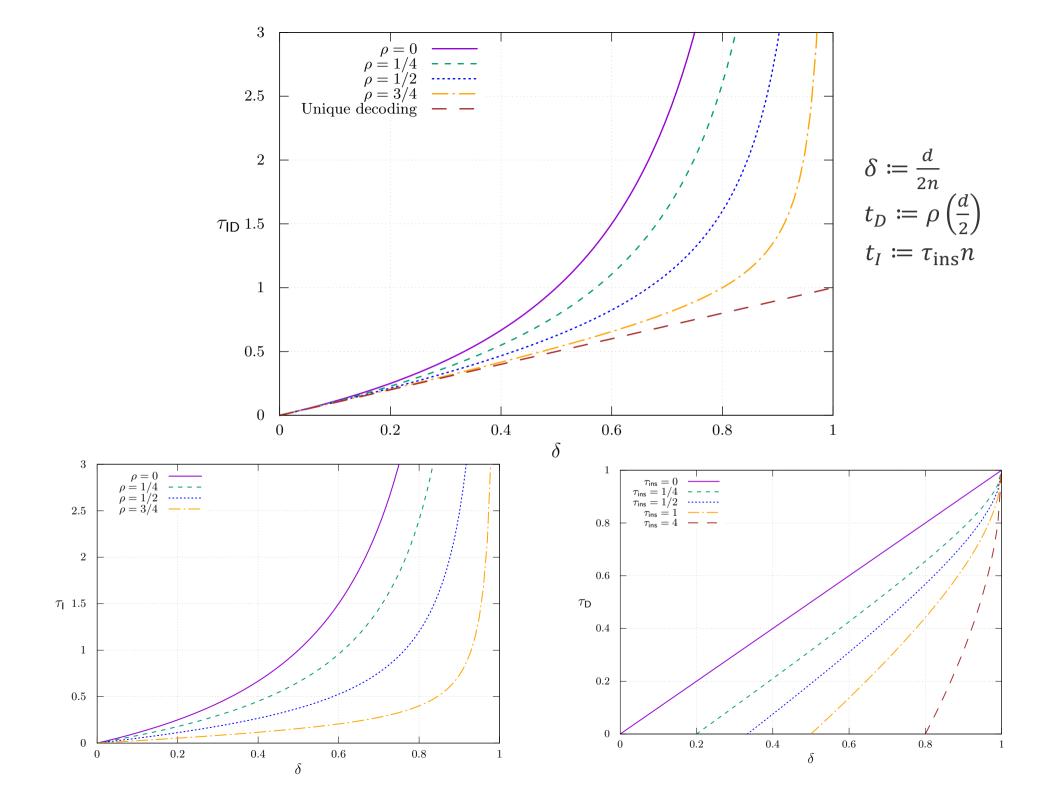
$$t_I < \frac{\left(\frac{d}{2} - t_D\right)(n - t_D)}{n - \frac{d}{2}} \qquad \bullet \quad \bullet \quad (***)$$
15

## Bounds on $t_I$ and $t_D$

Condition (\*\*\*) is equivalent to



where 
$$\delta \coloneqq \frac{a}{2n}$$
,  $t_D \coloneqq \rho\left(\frac{a}{2}\right)$ ,  $t_I \coloneqq \tau_{\text{ins}} n$   
for  $\delta \in [0,1)$ ,  $\rho \in [0,1)$ ,  $\tau_{\text{ins}} \ge 0$ 



#### Corollary 1

 $C \subseteq \Sigma^n$  s.t.  $d_L(C) = d$ For non-negative integers  $t_I, t_D \in \left[0, \frac{d}{2}\right), N \in \left[n - t_D, n + t_I\right]$ , let  $\ell := \max_{\boldsymbol{v} \in \Sigma^N} |B_L(\boldsymbol{v}, t_D, t_I) \cap C|.$ Let  $\delta \coloneqq \frac{d}{2n}$  and  $t_D \coloneqq \rho\left(\frac{d}{2}\right)$  for  $\rho \in [0,1)$ . If  $\frac{t_I + t_D}{m} < \delta + \frac{(1-\rho)^2 \delta^2}{1-\delta} = \tau_{ID}(\delta, \rho)$ , then  $\ell \le (n+t_I)d$ . Specifically, for any  $\tau_I^* > 0, \tau_D^* \in [0,1)$ , if  $\exists$  code with  $\delta \in [0,1)$  satisfying (A), the code is  $(\tau_I^* n, \tau_D^* n, \ell)$ -list decodable for  $\ell \leq 1 + \frac{\tau_I^*}{\delta - \tau_-^* - \tau_-^*}$ .  $\tau_I^* + \tau_D^* < \tau_{ID} \left( \delta, \frac{\tau_D^*}{\delta} \right) \Leftrightarrow \delta > \frac{\tau_I^* + \tau_D^* (1 - \tau_D^*)}{\tau_I^* + 1 - \tau_D^*} \quad \dots$ (A)

## Existence of list-decodable codes

- [Bukh, Guruswami, Hastad (IEEE IT 2017)]:  $\forall q \ge 2, \exists q$ -ary code of  $\delta \approx 1 - \frac{2}{q+\sqrt{q}}$  and rate  $\Omega(1)$ ( $\exists$  binary code of  $\delta \approx 0.414$ )
  - →  $\exists$  binary code of rate  $\Omega(1)$  list-decodable 0.707-frac. of ins. (or 0.414-frac. of del.)
- [Guruswami, Wang (IEEE IT 2017)] :  $\forall \varepsilon > 0, \exists q$ -ary code of  $\delta = 1 \varepsilon$ ,  $q = O(\varepsilon^{-3})$  and rate  $\Omega(1)$ 
  - →  $\tau_I^* > 0, \tau_D^* \in [0,1), \exists q$ -ary code of q = O(1) and rate  $\Omega(1)$  list-decodable against  $\tau_I^*$ -frac. of insertions and  $\tau_D^*$ -frac. of deletions

## **Recent Results**

- Efficient encoding and decoding for list-decoding of radius approaching  $\tau_I(\delta, 0)$  [Hayashi, Yasunaga (arXiv 2018)]
  - Concatenated code with outer Reed-Solomon code
  - Also, possible for deletion only, but not for both ins. & del.
- [Haeupler, Shahrasbi, Sudan (ICALP 2018)]:
  - $\forall \tau_I > 0, \ \tau_D \in (0,1), \ \varepsilon > 0, \ \exists q$ -ary code of rate  $1 \tau_D \varepsilon$ , q = O(1) list-decodable for  $\tau_I$ -frac. ins. &  $\tau_D$ -frac. del.
    - Optimal with respect to rate  $1 \tau_D \varepsilon$  and radius  $(\tau_{I}, \tau_D)$
  - Efficient encoding and decoding are also presented
  - Based on synchronization strings [Haeupler, Shahrasbi (STOC 2017)]
    - $\rightarrow q$  should be large, difficult to construct binary codes

## Plotkin-type Upper Bound on Code Size

### Theorem 2

$$C \subseteq \Sigma^n$$
 s.t.  $d_L(C) = d$ 

Suppose  $\exists v \in \Sigma^N$  that is a supersequence of every  $c \in C$ .

If 
$$\frac{d}{2n} \ge 1 - \frac{n}{N}$$
, then  $|C| \le \frac{Nd}{Nd - 2(N-n)n}$ .

**Proof.** Apply Theorem 1 for 
$$t_I = N - n$$
,  $t_D = 0$ , and  
the fact that  $\ell := \max_{\boldsymbol{v} \in \Sigma^N} |B_L(\boldsymbol{v}, t_D, t_I) \cap C| = |C|$ . QED

- A trivial supersequence for v is  $v' = 12 \cdots q 12 \cdots q \cdots 12 \cdots q \in [q]^{qn}$
- But, Theorem 2 for v' can be obtained by Plotkin bound in Hamming metric and the fact that  $d_H(c_i, c_j) \ge d_L(c_i, c_j)/2$
- $\rightarrow$  Theorem 2 is effective if non-trivial supsersequence v exists

# Conclusion

### Our results

- Johnson-type bound on list decodability of insertions and deletions
  - $\exists$  binary code of rate  $\Omega(1)$  list-decodable 0.707-frac ins.
  - $\tau_I^* > 0, \tau_D^* \in [0,1), \exists q$ -ary code of q = O(1) and rate  $\Omega(1)$  list-decodable against  $\tau_I^*$ -frac. Ins. and  $\tau_D^*$ -frac. del.
- Plotkin-type upper bound on code size

### Open problems

- Efficient list-decoding for both insertions & deletions
- Alphabet-size dependent Johnson-type bound
- Plotkin-type bound without assuming supersequence