
Public-Key Encryption with
Lazy Parties	

Kenji Yasunaga
Institute of Systems, Information Technologies and

Nanotechnologies (ISIT), Japan
Presented at SCN 2012

	
IMI Crypto Seminar 2012.12.17

One day in a class,	

Alice	
 Student 1	
 Student 2	
 Student 3	

・・・	

・・・	

One day in a class,	

Alice	
 Student 1	
 Student 2	
 Student 3	

・・・	

・・・	

 The class “Introduction to Cryptography”

One day in a class,	

Alice	
 Student 1	
 Student 2	
 Student 3	

・・・	

・・・	

 The class “Introduction to Cryptography”

 The final exam has finished.

One day in a class,	

Alice	
 Student 1	
 Student 2	
 Student 3	

・・・	

・・・	

Do you understand
public-key encryption ?

One day in a class,	

Alice	
 Student 1	
 Student 2	
 Student 3	

・・・	

・・・	

Yes !	

Yes !	

Yes !	

Do you understand
public-key encryption ?

One day in a class,	

Alice	
 Student 1	
 Student 2	
 Student 3	

・・・	

・・・	

 Good ! So, I’ll send
 your grades by PKE.	

One day in a class,	

Alice	
 Student 1	
 Student 2	
 Student 3	

・・・	

・・・	

 Good ! So, I’ll send
 your grades by PKE.	

 Please send me your
 public keys. All right ?	

One day in a class,	

Alice	
 Student 1	
 Student 2	
 Student 3	

・・・	

・・・	

Yes !	

Yes !	

Yes !	

 Good ! So, I’ll send
 your grades by PKE.	

 Please send me your
 public keys. All right ?	

One day in a class,	

Alice	

One day in a class,	

Alice	

 Although I said so,
 it is troublesome to encrypt all the grades.	

One day in a class,	

Alice	

 But, since I promised to use PKE,
 I have to do…

 Although I said so,
 it is troublesome to encrypt all the grades.	

One day in a class,	

Alice	

 But, since I promised to use PKE,
 I have to do…

What happened ?	

 Although I said so,
 it is troublesome to encrypt all the grades.	

What happened is …	

Alice	
 Student 1	
 Student 2	
 Student 3	

・・・	

・・・	

Grades: m1, m2, m3, …	

What happened is …	

Alice	
 Student 1	
 Student 2	
 Student 3	

・・・	

・・・	

pk1	
 pk2	
 pk3	

・・・	

Grades: m1, m2, m3, …	

What happened is …	

Alice	
 Student 1	
 Student 2	
 Student 3	

・・・	

・・・	

pk1	
 pk2	
 pk3	

・・・	

Grades: m1, m2, m3, …	

PKs: pk1, pk2, pk3, …	

What happened is …	

Alice	
 Student 1	
 Student 2	
 Student 3	

・・・	

・・・	

pk1	
 pk2	
 pk3	

・・・	

Grades: m1, m2, m3, …	

PKs: pk1, pk2, pk3, …	

 It’s troublesome to encrypt honestly…

What happened is …	

Alice	
 Student 1	
 Student 2	
 Student 3	

・・・	

・・・	

pk1	
 pk2	
 pk3	

・・・	

Grades: m1, m2, m3, …	

PKs: pk1, pk2, pk3, …	

 It’s troublesome to encrypt honestly…

 Wait !

What happened is …	

Alice	
 Student 1	
 Student 2	
 Student 3	

・・・	

・・・	

pk1	
 pk2	
 pk3	

・・・	

Grades: m1, m2, m3, …	

PKs: pk1, pk2, pk3, …	

The grades are personal information for students.
Their security is not my concern.

What happened is …	

Alice	
 Student 1	
 Student 2	
 Student 3	

・・・	

・・・	

pk1	
 pk2	
 pk3	

・・・	

Grades: m1, m2, m3, …	

PKs: pk1, pk2, pk3, …	

 Want to cut corners…

The grades are personal information for students.
Their security is not my concern.

What happened is …	

Alice	
 Student 1	
 Student 2	
 Student 3	

・・・	

・・・	

pk1	
 pk2	
 pk3	

・・・	

Grades: m1, m2, m3, …	

PKs: pk1, pk2, pk3, …	

What happened is …	

Alice	
 Student 1	
 Student 2	
 Student 3	

・・・	

・・・	

pk1	
 pk2	
 pk3	

・・・	

Grades: m1, m2, m3, …	

PKs: pk1, pk2, pk3, …	

Encrypt by using all-zero string
as randomness	

CTs: c1, c2, c3, …	

What happened is …	

Alice	
 Student 1	
 Student 2	
 Student 3	

・・・	

・・・	

pk1	
 pk2	
 pk3	

・・・	

Grades: m1, m2, m3, …	

PKs: pk1, pk2, pk3, …	

Encrypt by using all-zero string
as randomness	

CTs: c1, c2, c3, …	
 c1	
 c2	
 c3	
 ・・・	

What happened is …	

Alice	
 Student 1	
 Student 2	
 Student 3	

・・・	

・・・	

pk1	
 pk2	
 pk3	

・・・	

Grades: m1, m2, m3, …	

PKs: pk1, pk2, pk3, …	

Grades were not sent securely !	

Encrypt by using all-zero string
as randomness	

CTs: c1, c2, c3, …	
 c1	
 c2	
 c3	
 ・・・	

The lesson from this example	

The lesson from this example	

n  If some party in cryptographic protocols (PKE)
1.  is not concerned about the security
2.  is not willing to do a costly task (generating

randomness)
à The security can be compromised

The lesson from this example	

n  If some party in cryptographic protocols (PKE)
1.  is not concerned about the security
2.  is not willing to do a costly task (generating

randomness)
à The security can be compromised

n  The reason is that Alice is “lazy”

The lesson from this example	

n  If some party in cryptographic protocols (PKE)
1.  is not concerned about the security
2.  is not willing to do a costly task (generating

randomness)
à The security can be compromised

n  The reason is that Alice is “lazy”

n  Traditional crypto did not consider lazy parties

The lesson from this example	

n  If some party in cryptographic protocols (PKE)
1.  is not concerned about the security
2.  is not willing to do a costly task (generating

randomness)
à The security can be compromised

n  The reason is that Alice is “lazy”

n  Traditional crypto did not consider lazy parties

n  Many people tend to be lazy in the real life…
à Need secure protocols even for lazy parties

Our results	

n  Define the security of PKE for lazy parties
l  Lazy parties as rational players

n  Construct secure PKEs for lazy parties

Practical motivation	

n  Lazy parties is an example of protocols that may
not work if players behave in their own interests
l  The problem of lazy parties reveals

the motivation of using bad randomness in
PKE

n  Secure PKEs for lazy parties

n à Secure PKEs for which users have an
incentive to use good randomness

Lazy parties in PKE	

n  Sender (S) and Receiver (R) are lazy

n  Lazy S (and R)
(1) wants to securely transmit msgs in MS (and MR)
(2) doesn’t want to generate costly randomness

l  Choose
 (a) Costly true randomness (Good randomness) or
 (b) Zero-cost fixed string (Bad randomness)

n  Define a game between S, R, and an adversary (Adv)
l  A variant of usual CPA game
l  Lazy parties behave to maximize their payoffs
l  The goal is to design PKE secure for m ∈ MS∪MR	

CPA Game	

Challenge Dealer	
 Adv.	

Sender	
 Receiver	
c ß Encpk(mb; rS)

3. b ßR {0,1}	

pk	

pk	

c	

mb	

Enc Dealer	
 Gen Dealer	

1. G/B	

pk, sk	

4. G/B	

c	

1-b. If R chose B,
 rR ß A(1k)	

c	

m0, m1	

mb	

2. (m0, m1)
 ß A(pk)	

5. Output
 b’ ß A(c)	

(pk, sk)
ß  Gen(1k; rR)

1-a. If R chose G,
 rR ß Samp(Gen)

4-a. If S chose G,
 rS ß Samp(Enc)

4-b. If S chose B
 rR ß A	

Remarks on CPA Game	

n  We define the game more generally
l  Sender may run Gen algorithm
l  Encryption may be interactive

n  Output of the Game:
Out = (Win, ValS, ValR, NumS, NumR)
l  Win = 1 if b = b’, 0 otherwise
l  Valw = 1 if m ∈ Mw , 0 otherwise
l  Numw : #{ G output by w : w ∈ {S, R} }

Payoff function	

n  Payoff when the output of CPA game is
Out = (Win, ValS, ValR, NumS, NumR)

 uw(Out) = (-αw)•Win•Valw + (-βw)•Numw

l  αw, βw > 0 are real numbers
l  αw /2 > qw• βw is assumed．qw : Maximum of Numw

l  Costly good randomness is worth for achieving the security

n  Payoff when following the pair of strategies (σS, σR)

 Uw(σS, σR) = min E[uw(Out)]

l  min is taken over all Advs, message spaces MS, MR	

Security of PKE for lazy parties	

n  For PKE scheme Π, strategies (σS, σR),
 (Π, σS, σR) is CPA secure with (strict) Nash
equilibrium

1.  If players follow (σS, σR), then

for any adversary, message spaces MS, MR,

Pr[Win•(ValS + ValR) ≠ 0] ≤ 1/2 + negl(k)

2.  (σS, σR) is a (strict) Nash equilibrium

Solution concepts	

n  (σS, σR) is a Nash equilibrium :
l  For any w ∈ {S, R} and σw’,

 Uw(σS
*, σR

*) ≤ Uw(σS, σR) + negl(k)
where (σS

*, σR
*) = (σS’, σR) if w = S

 (σS, σR’) otherwise

n  (σS, σR) is a strict Nash equilibrium :
1.  (σS, σR) is a Nash equilibrium
2.  For any w ∈ {S, R} and σw’ ≠ σw ,

 Uw(σS
*, σR

*) ≤ Uw(σS, σR) – 1/kc
where c is a constant

First observation (Impossibility results) 	

n  Sender must generate a secret key

l  A game for distinguishing m0, m1 ∈ MR \ MS
 à S uses Bad randomness
 à Adv can correctly distinguish
 since Adv knows all the inputs to S except mb

n  Encryption must be interactive
l  A game for distinguishing (m0, m0) and (m0, m1)

for m0, m1 ∈ MR \ MS

 à S uses Bad randomness
 à Adv can correctly distinguish
 if two msgs were encrypted by same randomness	

Secure PKE for lazy parties
(1. Basic setting)	

n  Two-round PKE Πtwo
l  Idea: R generates randomness for encryption

R follows since doesn’t know whether m ∈ MR	

Sender	
 Receiver	

c2	

Encryption	

(pkS, skS) ß Gen(1k; r1
S)	
 pkS	

c1 ß Enc(pkS, r2
R; r3

R)	

c1	

r2
R ß Dec(skS, c1)	

c2 = m r2
R	
 m = c2 r2

R 	

Key Generation	

r2
R ßR U	

n  A problem of Πtwo :

 If R knows that m ∈ MR, R uses Bad randomness

 (m ∈ MS \ MR is not sent securely)

Secure PKE for lazy parties
(1. Basic setting)	

n  R may know whether m ∈ MR

Secure PKE for lazy parties
(2. R knows additional information)	

n  R may know whether m ∈ MR

n  Three-round PKE Πthree
Idea:
l  Key agreement to share randomness

l  Shared randomness is Good if S or R uses Good

l  Use the shared randomness for encryption

Secure PKE for lazy parties
(2. R knows additional information)	

Three-round PKE Πthree

Sender	
 Receiver	

c2, c3	

Encryption	

r = r2
R r2

S (= rL ◦ rR)	

(pkR, skR) ß Gen(1k; r1
R)	

pkR	

(pkS, skS) ß Gen(1k; r1
S)	
 pkS	

c1 ß Enc(pkS, r2
R; r3

R)	

c1	

r2
R ß Dec(skS, c1)	

c2 ß Enc(pkR, r2
S; r3

S)	

r2
S ß Dec(skR, c2)	

r = r2
R r2

S (= rL ◦ rR)	

c4 ß Enc(pkS, m; rR)	

c4	

c3 ß Enc(pkR, m; rL)	
 m ß Dec(skR, c3)	

Key Generation	

r2
R ßR U	

r2
S ßR U	

Non-interactive PKE for lazy parties	

Non-interactive PKE for lazy parties	

n  Additional assumption:
Players don’t want to reveal their secret keys

Non-interactive PKE for lazy parties	

n  Additional assumption:
Players don’t want to reveal their secret keys

n  Singcryption scheme is secure for lazy parties
if signing key (secret key) can be computed
from ciphertext and randomness

 à S uses Good to avoid revealing secret key

Conclusions	

n  “Lazy parties” may compromise the security
l  An example of protocols that may not work

if players behave in their own interests

n  Our results
l  Define the security of PKE for lazy parties
l  Construct secure PKEs for lazy parties

Conclusions	

n  “Lazy parties” may compromise the security
l  An example of protocols that may not work

if players behave in their own interests

n  Our results
l  Define the security of PKE for lazy parties
l  Construct secure PKEs for lazy parties

Thank you	

Lazy parties	

(1) They are not concerned about the security
 in a certain situation

(2) They are unwilling to do a costly task,
 although they behave in an honest-looking way

n  Costly task:
Ex. random generation (computation is costly)
 increasing # rounds to finish (time is costly)

n  Honest-looking behavior:
Ex. using all-zero string as randomness

A problem of Πthree	

n  If both S and R knows that m ∈ MS ∩ MR,
it’s difficult to determine which of S/R uses Good
l  Exits two different (strict) Nash strategies

A problem of Πthree	

n  If both S and R knows that m ∈ MS ∩ MR,
it’s difficult to determine which of S/R uses Good
l  Exits two different (strict) Nash strategies

n  Solution:
R uses the all-zero string as randomness in Enc
if R knows m ∈ MS ∩ MR

l  All-zero string is a signal to R

The security proof of Πthree	

(a) r = r2
R r2

S is Good if S or R uses Good

(b) m ∈ MS MR can be guessed from c4

(c) m ∈ MR MS can be guessed from c3

Key Gen
（S）	

Key Gen
（R）	

Enc
（S）	

Enc
（R）	

Security	

Good	
 Good	
 Good	
 -	
 ✓	

Good	
 Good	
 -	
 Good	
 ✓	

Bad	
 -	
 -	
 -	
 No	

-	
 Bad	
 -	
 -	
 No	

(a)	

(b)	

(c)	

CPA Game	

Challenge Dealer	
 Adv.	

Sender	
 Receiver	

c ß Encpk(mb; rS)

3. b ßR {0,1}	

pk	

pk	

c	

mb	

Enc Deale	
 Gen Dealer	

1. G/B	

pk, sk	

4. G/B	

c	

auxR	
auxS
	

c	

m0, m1	

mb	

⊥ if G
rS if B	

auxS＝	

2. (m0, m1)
 ß A1(pk, auxR)	

5. Output
 b’ ß A2(c, auxS)	

Pr[b = b’] ≤ 1/2 + negl(k) 	

(pk, sk)
ß  Gen(1k; rR)

⊥ if G
rR if B	

auxR＝	

Impossibility results	

n  Proposition 1.
If Sender does not have a secret key,
then the scheme is not CPA secure with
Nash equilibrium
l  A game for distinguishing m0, m1 ∈ MR \ MS

 à S uses Bad randomness
 à Adv can correctly distinguish
 since Adv knows all the inputs to S except mb

 à Sender must generate a secret key

