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Grades were not sent securely !	


Encrypt by using all-zero string 
as randomness	


CTs: c1,  c2,  c3, …	
 c1	
 c2	
 c3	
 ・・・	




The lesson from this example	




The lesson from this example	


n  If some party in cryptographic protocols (PKE) 
1.  is not concerned about the security 
2.  is not willing to do a costly task (generating 

randomness) 
à The security can be compromised 



The lesson from this example	


n  If some party in cryptographic protocols (PKE) 
1.  is not concerned about the security 
2.  is not willing to do a costly task (generating 

randomness) 
à The security can be compromised 

n  The reason is that Alice is “lazy” 



The lesson from this example	


n  If some party in cryptographic protocols (PKE) 
1.  is not concerned about the security 
2.  is not willing to do a costly task (generating 

randomness) 
à The security can be compromised 

n  The reason is that Alice is “lazy” 

n  Traditional crypto did not consider lazy parties 



The lesson from this example	


n  If some party in cryptographic protocols (PKE) 
1.  is not concerned about the security 
2.  is not willing to do a costly task (generating 

randomness) 
à The security can be compromised 

n  The reason is that Alice is “lazy” 

n  Traditional crypto did not consider lazy parties 

n  Many people tend to be lazy in the real life… 
à Need secure protocols even for lazy parties 



Our results	


n  Define the security of PKE for lazy parties 
l  Lazy parties as rational players 

n  Construct secure PKEs for lazy parties 



Practical motivation	


n  Lazy parties is an example of protocols that may 
not work if players behave in their own interests 
l  The problem of lazy parties reveals  

the motivation of using bad randomness in 
PKE 

n  Secure PKEs for lazy parties 

n à Secure PKEs for which users have an 
incentive to use good randomness 



Lazy parties in PKE	


n  Sender (S) and Receiver (R) are lazy 

n  Lazy S (and R)  
(1) wants to securely transmit msgs in MS (and MR) 
(2) doesn’t want to generate costly randomness 

l  Choose 
 (a) Costly true randomness (Good randomness) or 
 (b) Zero-cost fixed string (Bad randomness) 

n  Define a game between S, R, and an adversary (Adv) 
l  A variant of usual CPA game 
l  Lazy parties behave to maximize their payoffs 
l  The goal is to design PKE secure for m ∈ MS∪MR	




CPA Game	


Challenge Dealer	
 Adv.	


Sender	
 Receiver	
c ß Encpk(mb; rS) 

3. b ßR {0,1}	


pk	


pk	


c	

mb	


Enc Dealer	
 Gen Dealer	


1. G/B	


pk, sk	


4. G/B	


c	


1-b. If R chose B, 
  rR ß A(1k)	


c	


m0, m1	


mb	


2. (m0, m1)  
    ß A(pk)	


5. Output 
    b’ ß A(c)	


(pk, sk)  
ß  Gen(1k; rR) 

1-a. If R chose G, 
  rR ß Samp(Gen) 

4-a. If S chose G,  
  rS ß Samp(Enc) 

4-b. If S chose B 
  rR ß A	




Remarks on CPA Game	


n  We define the game more generally 
l  Sender may run Gen algorithm 
l  Encryption may be interactive 

n  Output of the Game: 
Out = (Win, ValS, ValR, NumS, NumR) 
l  Win = 1 if b = b’, 0 otherwise 
l  Valw = 1 if m ∈ Mw , 0 otherwise 
l  Numw : #{ G output by w : w ∈ {S, R} } 



Payoff function	


n  Payoff when the output of CPA game is  
Out = (Win, ValS, ValR, NumS, NumR)  

     uw(Out) = (-αw)•Win•Valw + (-βw)•Numw 
 

l  αw, βw > 0 are real numbers 
l  αw /2 > qw• βw is assumed．qw : Maximum of Numw 

l  Costly good randomness is worth for achieving the security 

n  Payoff when following the pair of strategies (σS, σR) 

           Uw(σS, σR) = min E[uw(Out)] 
 

l  min is taken over all Advs, message spaces MS, MR	




Security of PKE for lazy parties	


n  For PKE scheme Π, strategies (σS, σR),  
 (Π, σS, σR) is CPA secure with (strict) Nash 
equilibrium 
 
1.  If players follow (σS, σR), then 

for any adversary, message spaces MS, MR, 
 
Pr[Win•(ValS + ValR) ≠ 0] ≤ 1/2 + negl(k) 
 

2.  (σS, σR) is a (strict) Nash equilibrium 



Solution concepts	


n  (σS, σR) is a Nash equilibrium : 
l  For any w ∈ {S, R} and σw’, 

  Uw(σS
*, σR

*) ≤ Uw(σS, σR) + negl(k) 
where (σS

*, σR
*) = (σS’, σR) if w = S  

                             (σS, σR’) otherwise  

n  (σS, σR) is a strict Nash equilibrium : 
1.  (σS, σR) is a Nash equilibrium 
2.  For any w ∈ {S, R} and σw’ ≠ σw , 

  Uw(σS
*, σR

*) ≤ Uw(σS, σR) – 1/kc 
where c is a constant 



First observation (Impossibility results)  	

n  Sender must generate a secret key 

l  A game for distinguishing m0, m1 ∈ MR \ MS  
   à S uses Bad randomness 
   à Adv can correctly distinguish 
       since Adv knows all the inputs to S except mb 
 

n  Encryption must be interactive 
l  A game for distinguishing (m0, m0) and (m0, m1) 

for m0, m1 ∈ MR \ MS  

    à S uses Bad randomness 
    à Adv can correctly distinguish         
        if two msgs were encrypted by same randomness	




Secure PKE for lazy parties 
(1. Basic setting)	


n  Two-round PKE Πtwo 
l  Idea: R generates randomness for encryption 

R follows since doesn’t know whether  m ∈ MR	


Sender	
 Receiver	


c2	


Encryption	


(pkS, skS) ß Gen(1k; r1
S)	
 pkS	


c1 ß Enc(pkS, r2
R; r3

R)	

c1	


r2
R ß Dec(skS, c1)	


c2 = m    r2
R	
 m =  c2    r2

R 	


Key Generation	


r2
R ßR U	




n  A problem of Πtwo : 

    If R knows that m ∈ MR, R uses Bad randomness 
     
    ( m ∈ MS \ MR  is not sent securely ) 
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n  R may know whether m ∈ MR 

n  Three-round PKE Πthree 
Idea:  
l  Key agreement to share randomness 

l  Shared randomness is Good if S or R uses Good 

l  Use the shared randomness for encryption 

Secure PKE for lazy parties 
(2. R knows additional information)	




Three-round PKE Πthree 

Sender	
 Receiver	


c2, c3	


Encryption	


r = r2
R     r2

S (= rL ◦ rR)	


(pkR, skR) ß Gen(1k; r1
R)	


pkR	


(pkS, skS) ß Gen(1k; r1
S)	
 pkS	


c1 ß Enc(pkS, r2
R; r3

R)	


c1	


r2
R ß Dec(skS, c1)	


c2 ß Enc(pkR, r2
S; r3

S)	


r2
S ß Dec(skR, c2)	


r = r2
R     r2

S (= rL ◦ rR)	


c4 ß Enc(pkS, m; rR)	


c4	

c3 ß Enc(pkR, m; rL)	
 m ß Dec(skR, c3)	


Key Generation	


r2
R ßR U	


r2
S ßR U	
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Non-interactive PKE for lazy parties	


n  Additional assumption: 
Players don’t want to reveal their secret keys 

n  Singcryption scheme is secure for lazy parties 
if signing key (secret key) can be computed  
from ciphertext and randomness 

    à S uses Good to avoid revealing secret key 



Conclusions	


n  “Lazy parties” may compromise the security 
l  An example of protocols that may not work 

if players behave in their own interests  

n  Our results 
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Conclusions	


n  “Lazy parties” may compromise the security 
l  An example of protocols that may not work 

if players behave in their own interests  

n  Our results 
l  Define the security of PKE for lazy parties 
l  Construct secure PKEs for lazy parties 

Thank you	




Lazy parties	


(1) They are not concerned about the security 
      in a certain situation 

(2) They are unwilling to do a costly task, 
     although they behave in an honest-looking way 

n  Costly task: 
Ex. random generation (computation is costly) 
      increasing # rounds to finish (time is costly) 

n  Honest-looking behavior: 
Ex. using all-zero string as randomness 
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A problem of Πthree	


n  If both S and R knows that m ∈ MS ∩ MR, 
it’s difficult to determine which of S/R uses Good 
l  Exits two different (strict) Nash strategies 

n  Solution:  
R uses the all-zero string as randomness in Enc 
if R knows m ∈ MS ∩ MR 

l  All-zero string is a signal to R 



The security proof of Πthree	


(a) r = r2
R    r2

S is Good if S or R uses Good 

(b) m ∈ MS   MR can be guessed from c4 

(c) m ∈ MR   MS can be guessed from c3 

Key Gen 
（S）	


Key Gen 
（R）	


Enc 
（S）	


Enc 
（R）	


Security	


Good	
 Good	
 Good	
 -	
 ✓	


Good	
 Good	
 -	
 Good	
 ✓	


Bad	
 -	
 -	
 -	
 No	


-	
 Bad	
 -	
 -	
 No	


(a)	


(b)	


(c)	




CPA Game	


Challenge Dealer	
 Adv.	


Sender	
 Receiver	


c ß Encpk(mb; rS) 

3. b ßR {0,1}	


pk	


pk	


c	

mb	


Enc Deale	
 Gen Dealer	


1. G/B	


pk, sk	


4. G/B	


c	


auxR	
auxS
	


c	


m0, m1	


mb	


⊥  if G 
rS  if B	


auxS＝	


2. (m0, m1)  
    ß A1(pk, auxR)	


5. Output 
    b’ ß A2(c, auxS)	


Pr[ b = b’ ] ≤ 1/2 + negl(k) 	


(pk, sk)  
ß  Gen(1k; rR) 

⊥  if G 
rR  if B	


auxR＝	




Impossibility results	


n  Proposition 1. 
If Sender does not have a secret key, 
then the scheme is not CPA secure with  
Nash equilibrium 
l  A game for distinguishing m0, m1 ∈ MR \ MS  

   à S uses Bad randomness 
   à Adv can correctly distinguish 
       since Adv knows all the inputs to S except mb 
    

         à Sender must generate a secret key 


