Uncorrectable Errors of Weight Half the Minimum Distance for Binary Linear Codes

<u>Kenji Yasunaga</u>*

Toru Fujiwara⁺

*Kwansei Gakuin University, Japan ⁺Osaka University, Japan

2008 IEEE International Symposium on Information Theory, July 6th to 11th, 2008 Sheraton Centre Toronto Hotel, Toronto, Ontario, Canada

Summary of the Work

Main Result

- A lower bound on #(uncorrectable errors of weight [d/2]) for binary linear codes.
 - *d* : the minimum distance of the code
- A generalization to weight $> \lfloor d/2 \rfloor$.

Main Techniques

- Monotone error structure (Larger half)
 - Monotone error structure appears in [Peterson, Weldon, 1972].
 - Larger half was introduced in [Helleseth, Kløve, Levenshtein, 2005].

Outline

- Correctable/Uncorrectable Errors
- Our Results
- Monotone Error Structure
- Proof Sketch of Our Results

Outline

- Correctable/Uncorrectable Errors
- Our Results
- Monotone Error Structure
- Proof Sketch of Our Results

Problem Setting

- Binary linear code $C \subseteq \{0,1\}^n$
- Error vector $\boldsymbol{e} \in \{0,1\}^n$
- If $w(e) < d/2 \implies e$ is always correctable. If $w(e) \ge d/2 \implies ?$
 - w(x): the Hamming weight of x

In this work,

we investigate #(correctable errors of weight i) for $i \ge d/2$.

Correctable/Uncorrectable Errors

- Correctable errors $E^0(C)$
 - = Correctable by minimum distance decoding.
 - $E_i^0(C)$: Correctable errors of weight *i*
- Uncorrectable errors $E^1(C) = \{0,1\}^n \setminus E^0(C)$
 - $E_i^{-1}(C)$: Uncorrectable errors of weight *i*

•
$$|E_i^0(C)| + |E_i^1(C)| = \binom{n}{i}$$

• $|E_i(C)| + |E_i(C)| - (i)$ • The error probability over BSC_p is $P_{error} = \sum_{i=0}^n p^i (1-p)^{n-i} |E_i^1(C)|$.

- Minimum distance decoding
 - Outputs a nearest (w.r.t. Hamming dist.) codeword to the input.
 - Performs ML decoding for BSC.
 - Syndrome decoding is a minimum distance decoding.

Syndrome Decoding

Coset partitioning

$$\{0,1\}^n = \bigcup_{i=1}^{2^{n-k}} C_i, \quad C_i \cap C_j = \phi \text{ for } i \neq j$$
$$C_i = \{\mathbf{v}_i + \mathbf{c} : \mathbf{c} \in C\} : \text{Coset of } C$$
$$\mathbf{v}_i = \argmin_{v \in C_i} w(v) : \text{Coset leader of } C_i$$

- Syndrome decoding
 - Output $y + v_i$ if $y \in C_i$ (y is the input).
 - Coset leaders = Correctable errors.

Outline

- Correctable/Uncorrectable Errors
- Our Results
- Monotone Error Structure
- Proof Sketch of Our Results

Previous Results for $|E_i^{1}(C)|$

- For the first-order Reed-Muller code RM_m
 - $|E_{d/2}^{1}(\text{RM}_{m})|$ [Wu, 1998]
 - $|E_{d/2+1}^{1}(\mathbf{RM}_{m})|$ [Yasunaga, Fujiwara, 2007]

- For binary linear codes
 - Upper bounds on $|E_i^{-1}(C)|$ for every $0 \le i \le n$ [Poltyrev 1994], [Helleseth, Kløve 1997], [Helleseth, Kløve, Levenshtein 2005]

Our Results

- A lower bound on $|E_{\lceil d/2\rceil}^1(C)|$ for codes satisfying some condition.
 - The condition is not too restrictive.
 - Long Reed-Muller codes and random linear codes satisfy
 - Given by #(codewords of weight d (and d+1)).
 - Asymptotically coincides with the corresponding upper bound for Reed-Muller codes and random linear codes.
- A generalization to $|E_i^1(C)|$ for $i > \lfloor d/2 \rfloor$.
 - The bound is weak.

Outline

- Correctable/Uncorrectable Errors
- Our Results
- Monotone Error Structure
- Proof Sketch of Our Results

Monotone Error Structure

- Recall that a coset leader is a minimum weight vector in a coset.
- There may be more than one minimum weight vector in the same coset.
 - \Rightarrow Any of them will do.
- If we take the lexicographically smallest one for all cosets,
 ⇒ Correctable/uncorrectable errors have a monotone structure.

Monotone Error Structure

Notation

- Support of $v : S(v) = \{ i : v_i \neq 0 \}$
- **v** is covered by \boldsymbol{u} : $S(\boldsymbol{v}) \subseteq S(\boldsymbol{u})$
- Monotone error structure
 - v is correctable.

 \Rightarrow All vectors that are covered by v are correctable.

v is uncorrectable.

 \Rightarrow All vectors that cover v are uncorrectable.

Example

- 1100 is correctable. \Rightarrow 0000, 1000, 0100 are correctable.
- 0011 is uncorrectable. \Rightarrow 1011, 0111, 1111 are uncorrectable.

Minimal Uncorrectable Errors

- Errors have the monotone structure (w.r.t ⊆). ⇒ $E^1(C)$ is characterized by minimal vectors (w.r.t. ⊆).
- Minimal uncorrectable errors $M^1(C)$
 - = Uncorrectable errs. that are not covered by other uncorrectable errs.
 - $M^1(C)$ uniquely determines $E^1(C)$.
- Larger half LH(c) of $c \in C$
 - Introduced for characterizing $M^1(C)$ in [Helleseth et al., 2005].
 - Combinatorial construction is given in [Helleseth et al., 2005].
 - $M^1(C) \subseteq LH(C \setminus \{0\}) \subseteq E^1(C)$, where $LH(S) = \bigcup LH(c)$.

 $c \in S$

Outline

- Correctable/Uncorrectable Errors
- Previous Results
- Our Results
- Monotone Error Structure
- Proof Sketch of Our Results

Proof Sketch of Our Results

- Objective : To derive a lower bound on $|E_{\lceil d/2 \rceil}^1(C)|$.
- The following equalities hold:

$$M^{1}_{\lceil d/2 \rceil}(C) = LH_{\lceil d/2 \rceil}(C \setminus \{\mathbf{0}\}) = E^{1}_{\lceil d/2 \rceil}(C)$$

[Proof]

- $M^1(C) \subseteq LH(C \setminus \{\mathbf{0}\}) \subseteq E^1(C)$
- Since \$\left[d/2]\$ is the smallest weight in \$E^1(C)\$, uncorrectable errors of weight \$\left[d/2]\$ do not cover any other uncorrectable errors.

$$\Rightarrow M^{1}_{\lceil d/2 \rceil}(C) = E^{1}_{\lceil d/2 \rceil}(C)$$

• Derive a lower bound on $|LH_{\lceil d/2 \rceil}(C \setminus \{0\})|$.

• $LH_{d/2}(C \setminus \{0\}) = LH(A_d(C))$, where $A_i(C) = \{ \text{ codewords of weight } i \text{ in } C \}$.

Larger halves of two codewords in A_d(C) are almost disjoint.

 $|LH(\boldsymbol{c}_1) \cap LH(\boldsymbol{c}_2)| \le 1$ for every $\boldsymbol{c}_1, \boldsymbol{c}_2 \in A_d(C)$

The Results (d is even)

When *d* is even, if $\frac{1}{2} \begin{pmatrix} d \\ d/2 \end{pmatrix} > |A_d(C)| - 1$ holds, then

$$\frac{1}{2}\binom{d}{d/2} |A_d(C)| - (|A_d(C)| - 1)|A_d(C)| \le |E_{d/2}^1(C)| \le \frac{1}{2}\binom{d}{d/2} |A_d(C)|.$$

Upper bound is from [Helleseth et al. 2005]

• If
$$|A_d(C)| / \binom{d}{d/2} \to 0$$
 as $n \to \infty$ then upper and lower bounds

asymptotically coincide.

 For Reed-Muller codes and random linear codes, the upper and lower bounds asymptotically coincide.

The Results (d is odd)

When d is odd, if
$$\binom{d}{(d+1)/2} > |A_d(C)| + |A_{d+1}(C)| - 1$$
 holds, then
 $\binom{d}{(d+1)/2} (|A_d(C)| + |A_{d+1}(C)|) - (2|A_d(C)| + |A_{d+1}(C)| - 1)|A_{d+1}(C)|$
 $\leq |E_{(d+1)/2}^1(C)| \leq \binom{d}{(d+1)/2} (|A_d(C)| + |A_{d+1}(C)|).$

Upper bound is from [Helleseth et al. 2005]

• If
$$|A_{d+1}(C)| / {\binom{d}{(d+1)/2}} \to 0$$
 as $n \to \infty$ then upper and lower

bounds asymptotically coincide.

A Generalization to Larger Weights

• A similar argument can be applied to weight $i > \lfloor d/2 \rfloor$.

For an integer
$$i$$
 with $\lfloor d/2 \rfloor \le i \le \lfloor n/2 \rfloor$, if $\begin{pmatrix} 2i-3\\i \end{pmatrix} > 3 \begin{pmatrix} 2i - \lceil d/2 \rceil\\i \end{pmatrix} B_i$ holds, then

$$\begin{pmatrix} 2i-3\\i \end{pmatrix} - 3 \begin{pmatrix} 2i - \lceil d/2 \rceil\\i \end{pmatrix} B_i \end{pmatrix} B_i \le \|LH_i(C)\| \le \|E_i^1(C)\|$$

$$\le \begin{pmatrix} 2i-3\\i \end{pmatrix} \|A_{2i-2}(C)\| + 2 \begin{pmatrix} 2i-1\\i \end{pmatrix} (\|A_{2i-1}(C)\| + \|A_{2i}(C)\|)$$

where $B_i = |A_{2i-2}(C)| + |A_{2i-1}(C)| + |A_{2i}(C)|$.

For large *i*

- The condition for the bound is more restrictive.
- The bound is weak.
 - The bound is a lower bound on $LH_i(C)$.
 - The difference between $LH_i(C)$ and $E_i^{-1}(C)$ is large.

Conclusion

Main results

- A lower bound on #(correctable errors of weight [d/2]) for binary linear codes satisfying some condition.
 - The bound asymptotically coincides with the upper bound for Reed-Muller codes and random linear codes.
 - Monotone error structure & larger half are main tools.
 - A generalization to weight $i > \lceil d/2 \rceil$ is also obtained.

■ The generalized bound is weak for large *i*.

Future work

• A good lower bound for weight $> \lfloor d/2 \rfloor$.

Codes Satisfying the Condition

n
$$\frac{1}{2} \begin{pmatrix} d \\ d/2 \end{pmatrix} > |A_d(T)| - 1 \quad \text{for even } d$$
$$\begin{pmatrix} d \\ (d+1)/2 \end{pmatrix} > |A_d(T)| + |A_{d+1}(T)| - 1 \quad \text{for odd } d$$

The condition

Codes satisfying the condition

- (n, k) primitive BCH codes for n = 127 and $k \le 64$, n = 63 and $k \le 24$
- (n, k) extended primitive BCH codes for n = 127 and $k \le 64$, n = 63 and $k \le 24$
- *r*-th order Reed-Muller codes of length 2^m fixed *r* and $m \rightarrow \infty$
- Random linear codes for $n \to \infty$

r	т
1	≥ 4
2	≥ 6
3	≥ 8
4	≥10
5	≥11
6	≥13

A Generalization to Larger Weight

The lower bound for weight $\lceil d/2 \rceil$ is obtained by considering the vectors of weight $\lceil d/2 \rceil$ in

 $M^1(C) \subseteq LH(C) \subseteq E^1(C)$

- A similar argument can be applied to weight $i \ge \lfloor d/2 \rfloor + 1$ However, for large *i*,
 - The condition for the bound is more restrictive
 - The bound is weak
 - **D** The bound is a lower bound on $LH_i(C)$
 - **D** The difference between $LH_i(C)$ and $E_i^{-1}(C)$ is large