Uncorrectable Errors of Weight Half the Minimum Distance for Binary Linear Codes

Kenji Yasunaga* Toru Fujiwara ${ }^{+}$

*Kwansei Gakuin University, Japan
+Osaka University, Japan

Summary of the Work

Main Result

- A lower bound on \#(uncorrectable errors of weight $\lceil d / 2\rceil$) for binary linear codes.
- d : the minimum distance of the code
- A generalization to weight $>\lceil d / 2\rceil$.

Main Techniques

- Monotone error structure (Larger half)
- Monotone error structure appears in [Peterson, Weldon, 1972] .
- Larger half was introduced in [Helleseth, Kløve, Levenshtein, 2005] .

Outline

- Correctable/Uncorrectable Errors
- Our Results
- Monotone Error Structure
- Proof Sketch of Our Results

Outline

- Correctable/Uncorrectable Errors
- Our Results
- Monotone Error Structure
- Proof Sketch of Our Results

Problem Setting

- Binary linear code $C \subseteq\{0,1\}^{n}$
- Error vector $\boldsymbol{e} \in\{0,1\}^{n}$
- If $w(\boldsymbol{e})<d / 2 \Rightarrow \boldsymbol{e}$ is always correctable. If $w(\boldsymbol{e}) \geq d / 2 \Rightarrow$?
- $w(\boldsymbol{x})$: the Hamming weight of \boldsymbol{x}

In this work, we investigate \#(correctable errors of weight i) for $i \geq d / 2$.

Correctable/Uncorrectable Errors

- Correctable errors $E^{0}(C)$
= Correctable by minimum distance decoding.
- $E_{i}^{0}(C)$: Correctable errors of weight i
- Uncorrectable errors $E^{1}(C)=\{0,1\}^{n} \backslash E^{0}(C)$
- $E_{i}{ }^{1}(C)$: Uncorrectable errors of weight i
- $\left|E_{i}^{0}(C)\right|+\left|E_{i}^{1}(C)\right|=\binom{n}{i}$
- The error probability over BSC_{p} is $P_{\text {error }}=\sum_{i=0}^{n} p^{i}(1-p)^{n-i}\left|E_{i}^{1}(C)\right|$.
- Minimum distance decoding
- Outputs a nearest (w.r.t. Hamming dist.) codeword to the input.
- Performs ML decoding for BSC.
- Syndrome decoding is a minimum distance decoding.

Syndrome Decoding

- Coset partitioning

$$
\begin{aligned}
\{0,1\}^{n} & =\bigcup_{i=1}^{2^{n-k}} C_{i}, \quad C_{i} \cap C_{j}=\phi \text { for } i \neq j \\
C_{i} & =\left\{\boldsymbol{v}_{i}+\boldsymbol{c}: \boldsymbol{c} \in C\right\} \quad: \text { Coset of } C \\
\boldsymbol{v}_{i} & =\underset{v \in C_{i}}{\arg \min } w(\boldsymbol{v}) \quad: \text { Coset leader of } C_{i}
\end{aligned}
$$

- Syndrome decoding
- Output $\boldsymbol{y}+\boldsymbol{v}_{i}$ if $\boldsymbol{y} \in C_{i}$ (\boldsymbol{y} is the input).
- Coset leaders $=$ Correctable errors.

Outline

- Correctable/Uncorrectable Errors
- Our Results
- Monotone Error Structure
- Proof Sketch of Our Results

Previous Results for $\left|E_{i}{ }^{1}(C)\right|$

- For the first-order Reed-Muller code RM_{m}
- $\left|E_{d / 2}{ }^{1}\left(\mathrm{RM}_{m}\right)\right|[\mathrm{Wu}, 1998]$
- $\left|E_{d / 2+1}{ }^{1}\left(\mathrm{RM}_{m}\right)\right|$ [Yasunaga, Fujiwara, 2007]
- For binary linear codes
- Upper bounds on $\left|E_{i}{ }^{1}(C)\right|$ for every $0 \leq i \leq n$ [Poltyrev 1994], [Helleseth, Kløve 1997], [Helleseth, Kløve, Levenshtein 2005]

Our Results

- A lower bound on $\left|E_{[d / 2]}^{1}(C)\right|$ for codes satisfying some condition.
- The condition is not too restrictive.
- Long Reed-Muller codes and random linear codes satisfy
- Given by \#(codewords of weight d (and $d+1$)).
- Asymptotically coincides with the corresponding upper bound for Reed-Muller codes and random linear codes.
- A generalization to $\left|E_{i}^{1}(C)\right|$ for $i>\lceil d / 2\rceil$.
- The bound is weak.

Outline

- Correctable/Uncorrectable Errors
- Our Results
- Monotone Error Structure
- Proof Sketch of Our Results

Monotone Error Structure

- Recall that a coset leader is a minimum weight vector in a coset.
- There may be more than one minimum weight vector in the same coset.
\Rightarrow Any of them will do.
- If we take the lexicographically smallest one for all cosets, \Rightarrow Correctable/uncorrectable errors have a monotone structure.

Monotone Error Structure

- Notation
- Support of $v: S(\boldsymbol{v})=\left\{i: \boldsymbol{v}_{i} \neq 0\right\}$
- \boldsymbol{v} is covered by $\boldsymbol{u}: S(\boldsymbol{v}) \subseteq S(\boldsymbol{u})$
- Monotone error structure
v is correctable.
\Rightarrow All vectors that are covered by v are correctable. v is uncorrectable.
\Rightarrow All vectors that cover \boldsymbol{v} are uncorrectable.
- Example
- 1100 is correctable. $\Rightarrow 0000,1000,0100$ are correctable.
- 0011 is uncorrectable. $\Rightarrow 1011,0111,1111$ are uncorrectable.

Minimal Uncorrectable Errors

- Errors have the monotone structure (w.r.t \subseteq). $\Rightarrow E^{1}(C)$ is characterized by minimal vectors (w.r.t. \subseteq).
- Minimal uncorrectable errors $M^{1}(C)$
- = Uncorrectable errs. that are not covered by other uncorrectable errs.
- $M^{1}(C)$ uniquely determines $E^{1}(C)$.
- Larger half $L H(\boldsymbol{c})$ of $\boldsymbol{c} \in C$
- Introduced for characterizing $M^{1}(C)$ in [Helleseth et al., 2005].
- Combinatorial construction is given in [Helleseth et al., 2005].
- $M^{1}(C) \subseteq L H(C \backslash\{\mathbf{0}\}) \subseteq E^{1}(C)$, where $L H(S)=\bigcup_{c \in S} L H(\boldsymbol{c})$.

Outline

- Correctable/Uncorrectable Errors
- Previous Results
- Our Results
- Monotone Error Structure
- Proof Sketch of Our Results

Proof Sketch of Our Results

- Objective : To derive a lower bound on $\left|E_{[d / 2]}^{1}(C)\right|$.
- The following equalities hold:

$$
M_{\lceil d / 27}^{1}(C)=L H_{\lceil d / 2\rceil}(C \backslash\{\mathbf{0}\})=E_{[d / 2\rceil]}^{1}(C)
$$

[Proof]

- $M^{1}(C) \subseteq L H(C \backslash\{\mathbf{0}\}) \subseteq E^{1}(C)$
- Since $\lceil d / 2\rceil$ is the smallest weight in $E^{1}(C)$, uncorrectable errors of weight $\lceil d / 2\rceil$ do not cover any other uncorrectable errors.

$$
\Rightarrow M_{\lceil d / 27}^{1}(C)=E_{[d / 2\rceil}^{1}(C)
$$

- Derive a lower bound on $\left|L H_{[d / 2]}(C \backslash\{\mathbf{0}\})\right|$.

Proof Sketch of Our Results (d is even)

■ $L H_{d / 2}(C \backslash\{\mathbf{0}\})=L H\left(A_{d}(C)\right)$, where $A_{i}(C)=\{$ codewords of weight i in $C\}$.

- Larger halves of two codewords in $A_{d}(C)$ are almost disjoint.
$\left|L H\left(\boldsymbol{c}_{1}\right) \bigcap L H\left(\boldsymbol{c}_{2}\right)\right| \leq 1$ for every $\boldsymbol{c}_{1}, \boldsymbol{c}_{2} \in A_{d}(C)$

The Results (d is even)

When d is even, if $\frac{1}{2}\binom{d}{d / 2}>\left|A_{d}(C)\right|-1$ holds, then
$\frac{1}{2}\binom{d}{d / 2}\left|A_{d}(C)\right|-\left(\left|A_{d}(C)\right|-1\right)\left|A_{d}(C)\right| \leq\left|E_{d / 2}^{1}(C)\right| \leq \frac{1}{2}\binom{d}{d / 2}\left|A_{d}(C)\right|$.
Upper bound is from [Helleseth et al. 2005]

- If $\left|A_{d}(C)\right| /\binom{d}{d / 2} \rightarrow 0$ as $n \rightarrow \infty$ then upper and lower bounds asymptotically coincide.
- For Reed-Muller codes and random linear codes, the upper and lower bounds asymptotically coincide.

The Results (d is odd)

When d is odd, if $\binom{d}{(d+1) / 2}>\left|A_{d}(C)\right|+\left|A_{d+1}(C)\right|-1$ holds, then
$\binom{d}{(d+1) / 2}\left(\left|A_{d}(C)\right|+\left|A_{d+1}(C)\right|\right)-\left(2\left|A_{d}(C)\right|+\left|A_{d+1}(C)\right|-1\right)\left|A_{d+1}(C)\right|$

$$
\leq\left|E_{(d+1) / 2}^{1}(C)\right| \leq\binom{ d}{(d+1) / 2}\left(\left|A_{d}(C)\right|+\left|A_{d+1}(C)\right|\right) .
$$

Upper bound is from [Helleseth et al. 2005]

- If $\left|A_{d+1}(C)\right| /\binom{d}{(d+1) / 2} \rightarrow 0$ as $n \rightarrow \infty$ then upper and lower bounds asymptotically coincide.

A Generalization to Larger Weights

- A similar argument can be applied to weight $i>\lceil d / 2\rceil$.

For an integer i with $\lceil d / 2\rceil \leq i \leq\lfloor n / 2\rfloor$, if $\binom{2 i-3}{i}>3\binom{2 i-\lceil d / 2\rceil}{ i} B_{i}$ holds, then

$$
\begin{aligned}
\left(\binom{2 i-3}{i}\right. & \left.-3\binom{2 i-\lceil d / 2\rceil}{ i} B_{i}\right) B_{i} \leq\left|L H_{i}(C)\right| \leq\left|E_{i}^{1}(C)\right| \\
& \leq\binom{ 2 i-3}{i}\left|A_{2 i-2}(C)\right|+2\binom{2 i-1}{i}\left(\left|A_{2 i-1}(C)\right|+\left|A_{2 i}(C)\right|\right)
\end{aligned}
$$

where $B_{i}=\left|A_{2 i-2}(C)\right|+\left|A_{2 i-1}(C)\right|+\left|A_{2 i}(C)\right|$.

For large i

- The condition for the bound is more restrictive.
- The bound is weak.
- The bound is a lower bound on $L H_{i}(C)$.
- The difference between $L H_{i}(C)$ and $E_{i}^{1}(C)$ is large.

Conclusion

Main results

- A lower bound on \#(correctable errors of weight $\lceil d / 2\rceil$) for binary linear codes satisfying some condition.
- The bound asymptotically coincides with the upper bound for ReedMuller codes and random linear codes.
- Monotone error structure \& larger half are main tools.
- A generalization to weight $i>\lceil d / 2\rceil$ is also obtained.
- The generalized bound is weak for large i.

Future work

- A good lower bound for weight $>\lceil d / 2\rceil$.

Codes Satisfying the Condition

- The condition

$$
\frac{1}{2}\binom{d}{d / 2}>\left|A_{d}(T)\right|-1 \quad \text { for even } d
$$

$$
\binom{d}{(d+1) / 2}>\left|A_{d}(T)\right|+\left|A_{d+1}(T)\right|-1 \quad \text { for odd } d
$$

- Codes satisfying the condition
- (n, k) primitive BCH codes for $n=127$ and $k \leq 64, n=63$ and $k \leq 24$
- (n, k) extended primitive BCH codes for $n=127$ and $k \leq 64, n=63$ and $k \leq 24$
- r-th order Reed-Muller codes of length 2^{m} fixed r and $m \rightarrow \infty$

r	m
1	≥ 4
2	≥ 6
3	≥ 8
4	≥ 10
5	≥ 11
6	≥ 13

Proof Sketch of Our Results (d is even)

$$
L H_{d / 2}(C)
$$

x_{1}
x_{2}
\vdots

Proof Sketch of Our Results (d is even)

$A_{i}(C)$: the set of codewords with weight i

Proof Sketch of Our Results (d is even)

$A_{i}(C)$: the set of codewords with weight i

Proof Sketch of Our Results (d is even)

$A_{i}(C)$: the set of codewords with weight i

Proof Sketch of Our Results (d is even)

$A_{i}(C)$: the set of codewords with weight i

Proof Sketch of Our Results (d is even)

$A_{i}(C)$: the set of codewords with weight i

Proof Sketch of Our Results (d is even)

$A_{i}(C)$: the set of codewords with weight i

Proof Sketch of Our Results (d is even)

$A_{i}(C)$: the set of codewords with weight i

Proof Sketch of Our Results (d is even)

$A_{i}(C)$: the set of codewords with weight i

A Generalization to Larger Weight

- The lower bound for weight $\lceil d / 2\rceil$ is obtained by considering the vectors of weight $\lceil d / 2\rceil$ in

$$
M^{1}(C) \subseteq L H(C) \subseteq E^{1}(C)
$$

- A similar argument can be applied to weight $i \geq\lceil d / 2\rceil+1$ However, for large i,
- The condition for the bound is more restrictive
- The bound is weak
- The bound is a lower bound on $L H_{i}(C)$
- The difference between $L H_{i}(C)$ and $E_{i}(C)$ is large

