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Summary of the Work

Main Result

 A lower bound on #(uncorrectable errors of weight             ) for 
binary linear codes.
 d : the minimum distance of the code

 A generalization to weight                .

Main Techniques

 Monotone error structure (Larger half)
 Monotone error structure appears in [Peterson, Weldon, 1972] .

 Larger half was introduced in [Helleseth, Kløve, Levenshtein, 2005] .
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Problem Setting

 Binary linear code  C ⊆ {0,1}n

 Error vector  e ∊ {0,1}n

 If  w(e) < d/2 ⇒ e is always correctable.
If  w(e) ≥ d/2  ⇒ ?
 w(x) : the Hamming weight of  x

In this work, 

we investigate #( correctable errors of weight  i )  for  i ≥ d/2 .
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Correctable/Uncorrectable Errors

 Correctable errors  E0(C) 
= Correctable by minimum distance decoding.
 Ei

0 (C) : Correctable errors of weight i

 Uncorrectable errors  E1(C) = {0,1}n 〵E0(C)

 Ei
1(C) : Uncorrectable errors of weight i



 The error probability over BSCp is                                                                 .

 Minimum distance decoding 
 Outputs a nearest (w.r.t. Hamming dist.) codeword to the input.

 Performs ML decoding for BSC.

 Syndrome decoding is a minimum distance decoding.
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Syndrome Decoding

 Coset partitioning

 Syndrome decoding

 Output   y + vi if  y∈Ci ( y is the input).

 Coset leaders = Correctable errors.
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Previous Results for |Ei
1(C)| 

 For the first-order Reed-Muller code RMm

 |Ed/2
1(RMm)|  [Wu, 1998]

 |Ed/2+1
1(RMm)|  [Yasunaga, Fujiwara, 2007]

 For binary linear codes
 Upper bounds on  |Ei

1(C)| for every 0 ≤ i ≤ n [Poltyrev 1994], 
[Helleseth, Kløve 1997], [Helleseth, Kløve, Levenshtein 2005]
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Our Results

 A lower bound on for codes satisfying some 
condition.

 The condition is not too restrictive.

 Long Reed-Muller codes and random linear codes satisfy

 Given by #(codewords of weight  d (and d+1)).

 Asymptotically coincides with the corresponding upper bound for 
Reed-Muller codes and random linear codes.

 A generalization to for .

 The bound is weak.
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Monotone Error Structure

 Recall that a coset leader is a minimum weight vector in a 
coset.

 There may be more than one minimum weight vector in the 
same coset.
⇒ Any of them will do.

 If we take the lexicographically smallest one for all cosets,
⇒ Correctable/uncorrectable errors have a monotone

structure.
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Monotone Error Structure

 Notation
 Support of  v :  S(v) = { i : vi ≠ 0 } 

 v is covered by  u :   S(v) ⊆ S(u) 

 Monotone error structure
v is correctable.

⇒ All vectors that are covered by  v are correctable.
v is uncorrectable. 

⇒ All vectors that cover  v  are uncorrectable.

 Example

 1100 is correctable.       ⇒ 0000, 1000, 0100  are correctable.

 0011 is uncorrectable. ⇒ 1011, 0111, 1111  are uncorrectable.
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Minimal Uncorrectable Errors

 Errors have the monotone structure (w.r.t ⊆).
⇒ E1(C) is characterized by minimal vectors (w.r.t. ⊆).

 Minimal uncorrectable errors M1(C)

 = Uncorrectable errs. that are not covered by other uncorrectable errs.

 M1(C) uniquely determines E1(C).

 Larger half LH(c) of c∈C

 Introduced for characterizing  M1(C) in [Helleseth et al., 2005].

 Combinatorial construction is given in [Helleseth et al., 2005].

 M1(C) ⊆ LH(C〵{0}) ⊆ E1(C), where                                     .
Sc
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Proof Sketch of Our Results

 Objective : To derive a lower bound on                     .

 The following equalities hold:

[Proof]


 Since is the smallest weight in E1(C), uncorrectable errors of 
weight             do not cover any other uncorrectable errors.

⇒

 Derive a lower bound on                               .
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Proof Sketch of Our Results ( d is even )

 , where Ai(C) = { codewords of weight  i in C}.

 Larger halves of two codewords in Ad(C) are almost disjoint.
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For every ci ∈ Ad(C),

#(common LH) is less than |Ad(C)|.



The Results ( d is even )

When d is even, if                                     holds, then 

 If                                            as                  then upper and lower bounds 

asymptotically coincide.

 For Reed-Muller codes and random linear codes, the upper and lower 
bounds asymptotically coincide.
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The Results ( d is odd )
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When d is odd, if                                                        holds, then 

 If                                                        as                 then upper and lower

bounds asymptotically coincide.
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 A similar argument can be applied to weight                        .

For large i

 The condition for the bound is more restrictive.

 The bound is weak.
 The bound is a lower bound on LHi(C).

 The difference between LHi(C) and Ei
1(C) is large.

A Generalization to Larger Weights
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For an integer  i with  ⌈d/2⌉ ≤ i ≤ ⌊n/2⌋,   if                                              holds, then

 2/di 

where Bi = |A2i−2(C)| +|A2i−1(C)| + |A2i(C)|.



Conclusion

Main results

 A lower bound on #(correctable errors of weight ) for 
binary linear codes satisfying some condition.

 The bound asymptotically coincides with the upper bound for Reed-
Muller codes and random linear codes.

 Monotone error structure & larger half are main tools.

 A generalization to weight                       is also obtained.

 The generalized bound is weak for large i .

Future work

 A good lower bound for weight                .
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Codes Satisfying the Condition

 The condition

 Codes satisfying the condition

 (n, k) primitive BCH codes for n = 127 and k ≤ 64, n = 63 and k ≤ 24

 (n, k) extended primitive BCH codes for n = 127 and k ≤ 64, n = 63 and 
k ≤ 24

 r-th order Reed-Muller codes of length 2m

fixed r and m →∞

 Random linear codes for n → ∞
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Proof Sketch of Our Results ( d is even )

x2

・・・

x1

)(2/ CLHd



24

Proof Sketch of Our Results ( d is even )
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Proof Sketch of Our Results ( d is even )
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Proof Sketch of Our Results ( d is even )
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Proof Sketch of Our Results ( d is even )
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Proof Sketch of Our Results ( d is even )
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Proof Sketch of Our Results ( d is even )
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Proof Sketch of Our Results ( d is even )
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Proof Sketch of Our Results ( d is even )
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For every ci ∈ Ad(T),

#(common LH) is less than |Ad(T)| – 1

Thus,

if |LH(ci)| > |Ad(T)| – 1, then 

(|LH(ci)| － |Ad(T)|+1) |Ad(T)| ≤ |LHd/2(T)| 
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A Generalization to Larger Weight

 The lower bound for weight             is obtained by considering 
the vectors of weight in

 A similar argument can be applied to weight 
However, for large i,
 The condition for the bound is more restrictive

 The bound is weak

 The bound is a lower bound on LHi(C)

 The difference between LHi(C) and Ei
1(C) is large
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