Relations between the Local Weight Distributions of a Linear Block Code, Its Extended Code, and Its Even Weight Subcode

> Kenji YASUNAGA and Toru FUJIWARA Osaka University, Osaka, Japan

> > ISIT2005, Adelaide, Australia

Local Weight Distribution (LWD) of a Code

- LWD is the weight distribution of codewords that are neighbor to the zero codeword (called *zero neighbors*) in the code.
- LWD (as well as Weight Distribution) is useful for an error performance analysis of the code.
 - LWD could give a tighter bound than usual union bound using Weight Distribution.

Motivation

- LWD of (128,50) extended BCH is obtained, but LWD of (127,50) BCH is not obtained.
 - An algorithm for computing LWD using the automorphism group of a code [Yasunaga, Fujiwara, ISITA 04].
 - Ext. BCH have larger automorphism group than BCH.

Our Goal: To devise a method for obtaining LWDs of BCH from LWDs of ext. BCH

Main Result: Relations between LWDs of C and C_{ex}

- If (1) all the weights of codewords in C_{ex} are multiples of fours
 - (2) C_{ex} is a *transitive invariant code* (ext. BCH, Reed-Muller),

- (128,50) ext. BCH code satisfies above two conditions.

Other Result

- Relations between LWDs of C and C_{even} .
 - Similar approach to relations between C and C_{ex}
 - LWD of even weight subcode of (127,50) BCH code

Contents

Local Weight Distribution

– Zero neighbor and LWD, Known results

Details of Our Results

Zero neighbor and LWD

• LWD of *C* is the weight distribution of *zero neighbors* in *C*.

Known Results for LWD

- Hamming codes, 2nd-order Reed-Muller codes
 - The formulas for the LWDs are derived [Ashikhmin, Barg, IEEE Trans. IT 98].
- Primitive BCH codes
 - (63, k) codes for all k [Mohri, Honda, Morii, IEICE 03]
- Extended primitive BCH codes
 - (128, k) codes for $k \leq 50$ [Yasunaga, Fujiwara, ISITA 04]
- Reed-Muller codes
 - 3rd-order RM code of length 128
 [Yasunaga, Fujiwara, IEICE repo. 04]

Numerical Computation

Contents

Local Weight Distribution

– Zero neighbor and LWD, Known results

- Details of Our Results
 - Condition for zero neighbor
 - Zero neighborship between C and C_{ex}
 - Relations between LWDs of C and C_{ex}

Condition for zero neighbor

v is a zero neighbor in *C* ⇔ *C* does not contain $v_1, v_2 \in C$ such that $v = v_1 + v_2$, Supp $(v_1) \cap$ Supp $(v_2) = \phi$.

Supp(
$$v$$
) := { $i : v_i \neq 0$ for $v = (v_1, v_2, ..., v_n)$ }

If C contains such v_1 and v_2 , then v is called *decomposable*. (i.e. v is decomposable \Leftrightarrow v is not a zero neighbor)

Zero neighborship between C and C_{ex}

$v^{(ex)}$ is a zero neighbor or not in C_{ex} ?

	(a) weight(v) is odd	(b) weight(v) is even
(1) v is a zero neighbor in C	Zero neighbor	Zero neighbor
(2) v is not a zero neighbor in C	Not zero neighbor	Both cases can occur

(2) v is not a zero neighbor in C(b) weight(v) is even

v is decomposable into $v_1 + v_2$, $v_1, v_2 \in C$

(2) v is not a zero neighbor in C(b) weight(v) is even

If (ii) occurs for all v's decompositions, v is called *only-odd decomposable*, and $v^{(ex)}$ is a zero neighbor in C_{ex} .

v is an only-odd decomposable codeword.

 \Leftrightarrow Zero neighborship between v and $v^{(ex)}$ differs. (v is not zero neighbor, $v^{(ex)}$ is zero neighbor)

 \rightarrow Condition for *C* containing no only-odd decomposable codewords.

Theorem 3 :

If all the weights of codewords in C_{ex} are multiples of four, there is no only-odd decomposable codewords in C.

Examples of above C_{ex} :

- (128, k) extended primitive BCH codes with $k \leq 57$
- 3rd-order Reed-Muller codes of length $n \ge 128$

 In the case that C contains no only-odd decomposable codewords,

– LWD of $C_{\rm ex}$ is obtained from LWD of C

- To obtain LWD of C from LWD of C_{ex} , we have to know #(zero neighbors of parity bit one).

Transitive invariant codes: extended primitive BCH codes, Reed-Muller codes

Proof of Theorem 8.15, W. W. Peterson and E. J. Weldon, Jr., *Error correcting codes*, *2nd Edition*, 1972

Theorem 6:
If
$$C_{ex}$$
 is a transitive invariant code of length $n + 1$,
 $L_w(C) = \frac{w+1}{n+1} L_{w+1}(C_{ex})$, for odd w ,
 $L_w(C) = \frac{n+1-w}{n+1} L_w(C_{ex}) - N_w(C)$, for even w .

N_w(C) := #(only-odd decomposable codewords in C
 with weight w)

If (1) all the weights of codewords in C_{ex} are multiples of four and (2) C_{ex} is a transitive invariant code, LWD of *C* is determined from LWD of C_{ex} .

LWD of (127,50) primitive BCH code

weight

the number of zero neighbors	weight	
40894	52]
146050	55	4
4853051	56	e
14559153	59	11
310454802	60	13
793384494	63	15
10538703840	64	15
23185148448	67	13
199123183160	68	11
380144258760	71	e
2154195406104	72	4
3590325676840	75]
13633106229288	76]

Conclusion

- LWD is useful for an error performance analysis.
- Relation between LWDs of C and C_{ex} .
 - If (1) all the weights of codewords in C_{ex} are multiples of four and (2) C_{ex} is a transitive invariant code, LWD of *C* is obtained from LWD of C_{ex} .
- LWDs of (127,50) BCH codes.
 - from LWDs of (128,50) extended BCH codes

Applications of LWD

Error performance analysis

- P_e : Error probability of soft decision decoding on AWGN

Theorem 2 :

For a code C of length n_r

 $L_{2i}(C_{\text{ex}}) = L_{2i-1}(C) + L_{2i}(C) + N_{2i}(C), 0 \le i \le n/2.$

N_w(C) := #(only-odd decomposable codewords in C
 with weight w)

If there is no only-odd decomposable codewords in C, LWD of C_{ex} is determined from LWD of C.

Relations between LWDs of C and C_{ex}

- 1. $v \in C$ is an *only-odd decomposable codeword*. ⇔ Zero neighborship of v and $v^{(ex)} \in C_{ex}$ differs (v is not a zero neighbor, $v^{(ex)}$ is a zero neighbor).
- 2. If all the weights of codewords in C_{ex} are multiples of four, there is no only-odd decomposable codewords in *C* (Theorem 3).
- 3. If C_{ex} is a transitive invariant code and there is no onlyodd decomposable codewords in C, LWD of C is determined from LWD of C_{ex} (Theorem 6).