挿入・削除訂正符号のサイズの上下界式

Levenshtein 距離

 $d_L(x, y) := \min \{ x e y c g 換 f a n c 必要な挿入・削除数 \}$

- $(\mathfrak{H}, d_L(000, 111) = 6, d_L(101, 010) = 2$
- $|\mathbf{x}| = |\mathbf{y}| = n \mathcal{O}$ とき、 $0 \le d_L(\mathbf{x}, \mathbf{y}) \le 2n$

符号 C の最小 Levenshtein 距離: $d_L(C) \coloneqq \min_{c_1 \neq c_2 \in C} d_L(c_1, c_2)$

 $d_L(C) \ge d$ のとき, C は合計 $t \le \left\lfloor \frac{d-1}{2} \right\rfloor$ 個の挿入・削除を訂正できる

• $C \subseteq \Sigma^n$ のとき、 $d_L(C)$ は偶数で、 $t \leq \frac{d_L(C)}{2} - 1$ 個を訂正できる

相対最小距離は $\frac{d_L(C)}{2n}$ ∈ [0,1]
 符号の相対最小距離 ≥ δ → δ割合未満の挿入・削除を訂正

最良の符号サイズ $A_q(n,d)$

 $A_q(n,d) \coloneqq \max\{ |C| : \exists C \subseteq \Sigma^n \text{ s.t. } |\Sigma| = q, d_L(C) \ge d \}$

- *A_q(n,d)*の上界式 → 符号として存在しない領域
- *A_q(n,d)*の下界式 → 符号として存在しうる領域

漸近的な評価

- 符号長 *n* → ∞ の場合の振る舞いを評価
- ・ $A_q(n,d)$ を達成する符号 $C \subseteq \Sigma^n$ に対し、 符号化率 $R = \log_q |C|$ と相対最小距離 $\delta = \frac{d_L(C)}{2n}$ の トレードオフを明らかにしたい

基本的な事実(その1)

削除球 *D_t*(*x*) := { *x* から *t* 削除してできる文字列 *y* }

- $|D_t(\boldsymbol{x})| \leq {\binom{|\boldsymbol{x}|}{t}}$
- xのラン数 = $r(x) \ge 2t$ のとき, $\sum_{i=0}^{t} \binom{r(x)-t}{i} \le |D_t(x)| \le \binom{r(x)+t-1}{t}$
 - 例. r(0000) = 1, r(0011) = 2, r(0101) = 4
- $R_q(n,r) \coloneqq \{ \mathbf{x} \in \Sigma^n : r(x) = r \}, \ |R_q(n,r)| = \binom{n-1}{r-1} q(q-1)^{r-1}$

基本的な事実(その2)

挿入削除球 $L_{t,s}(\mathbf{x}) \coloneqq \{\mathbf{x} \in t \mid \| \hat{\mathbf{x}} \cdot s \mid \hat{\mathbf{x}} \in f \}$

•
$$L_{t,0}(x) = D_t(x), L_{0,t}(x) = I_t(x)$$

$|L_{t,t}(\mathbf{x})|$ の緊密な評価式は未解決問題 • $|L_{t,t}(\mathbf{x})| \le |D_t(\mathbf{x})| \cdot I_q (n - t, t)$ が上界では最も良い??

二重数え上げ (double counting) より,以下が成り立つ

$$\sum_{\mathbf{y}\in\Sigma^{n+t}}|D_t(\mathbf{y})| = \sum_{\mathbf{x}\in\Sigma^n}|I_t(\mathbf{x})| = q^n \cdot I_q(n,t)$$

球充填 (sphere-packing) タイプの上界式

Theorem 1. 最小 Levenshtein 距離 d = 2(t+1) の $C \subseteq \Sigma^n$ に対し, $|C| \le \left| \frac{q^{n+t}}{I_q(n,t)} \right|$

証明:各 $c \in C$ に対し, $I_t(c) \subseteq \Sigma^{n+t}$ は互いに交わらないため

Corollary 1. 最小 Levenshtein 距離 δn , 符号化率 $R \ \mathcal{O} \ C \subseteq \Sigma^n$ に対し, $R \le (1+\delta) \left(1 - H_q \left(\frac{\delta}{1+\delta} \right) \right) + o(1)$

主結果その1: Elias タイプの上界式

Theorem 2. 最小 Levenshtein 距離
$$d < 2n \text{ O} C \subseteq \Sigma^n$$
 について,
 $t < \frac{nd}{2n-d}$
を満たす任意の $t \ge 0$ に対し,
 $|C| \le \left[\frac{(n+t)d}{(n+t)d - 2nt} \cdot \frac{q^{n+t}}{I_q(n,t)} \right]$

Corollary 2. 最小 Levenshtein 距離 δn , 符号化率 R の $C \subseteq \Sigma^n$ に対し, $R \leq \frac{1}{1-\delta} (1-H_q(\delta)) + o(1)$

Theorem 2 の証明

二重数え上げを、符号 C との共通部分に適用すると、

$$\sum_{\boldsymbol{y}\in\Sigma^{n+t}} |D_t(\boldsymbol{y}) \cap C| = \sum_{\boldsymbol{x}\in C} |I_t(\boldsymbol{x})| = |C| \cdot I_q(n,t)$$

- ランダムに $y \in \Sigma^{n+t}$ を選ぶと、 $|D_t(y) \cap C| \ge \frac{|C| \cdot I_q(n,t)}{q^{n+t}}$ を満たす $y \in \Sigma^{n+t}$ が存在
- |D_t(y) ∩ C| は半径 t のリスト復号のリストサイズ
- [Hayashi, Yasunaga (IEEE IT 2020)] のリストサイズ可能性を適用

•
$$t < \frac{nd}{2n-d}$$
 に対し, $|D_t(y) \cap C| \le \frac{(n+t)d}{(n+t)d-2nt}$

Hamming 距離の符号に対する上界式の適用

符号 C の最小 Hamming 距離 $\leq d$

→ C の最小 Levenshtein 距離 $\leq 2d$

Hamming 距離での $A_q(n,d)$ の上界式

→ Levenshtein 距離での $A_q(n,d)$ の上界式

Theorem 3. 最小 Levenshtein 距離 δn , 符号化率 $R \ \mathcal{O} \ C \subseteq \Sigma^n$ に対し, $R \le 1 - H_q \left(\theta - \sqrt{\theta(\theta - \delta)} \right) + o(1)$ (Elias 限界) $R \le H_q \left(\frac{1}{q} \left(q - 1 - (q - 2)\delta - 2\sqrt{\delta(1 - \delta)(q - 1)} \right) \right) + o(1)$ (MRRW 限界) ここで, $0 \le \delta \le \theta = 1 - \frac{1}{q}$

平均球サイズによる下界式

Tolhuizen (IEEE IT 1997). *X* 上の距離関数 $\rho: X \times X \to \mathbb{Z}$ に対し, • *x* 中心の半径 *d* の球サイズ $V_d(x) \coloneqq |\{y \in X: \rho(x, y) \le d\}|$ • 平均球サイズ $V_d^{\text{ave}} \coloneqq \frac{1}{|X|} \sum_{x \in X} V_d(x)$ のとき,最小距離 *d* の符号 *C* として, $|C| \ge \frac{|X|}{V_{d-1}^{\text{ave}}}$ が存在

Levenshtein (ISIT 2002). 任意の $1 \le t \le n$ に対し, 以下を満たす最小距離 $d = 2(t+1) = 2\delta n$ の符号 *C* が存在. $|C| \ge \frac{q^{n+t}}{I_q(n-t,t)^2}$ つまり 符号化率 $R \ge 1 + \delta - 2H_q(\delta)$

グラフ理論による下界式

集合
$$X \subseteq \Sigma^n$$
 に対し、グラフ $G = (V, E)$ を

- 各 $x \in X$ が頂点, $d_L(x, y) \le d 1$ なら辺(x, y)が存在 と定めると,
- G の独立集合の最大サイズ = $\alpha(G)$ \Leftrightarrow $A_q(n,d) = \alpha(G)$
- 独立数 (independence number) α(G) に関する
 グラフ理論の結果が利用できる
 - Turán の定理より GV 限界が導かれる (Tohluizen (1997))
 - Jiang, Vardy (IEEE IT 2004) による GV 限界の改良もこれ

Caro-Wei 限界による下界式

Caro-Wei 限界

$$\alpha(G) \ge \sum_{x \in V} \frac{1}{1 + \deg(x)}$$

Theorem 5. 任意の
$$d = 2(t+1) < n$$
, 整数 $1 \le r \le n$ に対し,
 $A_q(n,d) \ge \left| \frac{\left(q^n - \sum_{i=r}^n \binom{n-1}{i-1}q(q-1)^{i-1}\right)^2}{I_q(n-t,t)\left(q^{n-t} \cdot I_q(n,t) - \sum_{i=r}^n \binom{n-1}{i-1}q(q-1)^{i-1} \cdot \left(\sum_{j=1}^t \binom{i-t}{j}\right)\right)} \right|$

証明:集合 *X* ⊆ Σ^n をラン数 *r* 以上の文字列集合とし, Caro-Wei 限界に deg(*x*) ≤ $|L_{t,t}(\mathbf{x})| \le |D_t(\mathbf{x})| \cdot I_q$ (*n* − *t*, *t*) を適用

Sala, Gabrys, Dolecek (ISIT 2014)の下界式(式自体は省略)

グラフの三角形数 *T* を用いた以下を利用(Δは最大次数)

$$\alpha(G) \ge \frac{|V|}{10\Delta} \left(\log \Delta - \frac{1}{2} \log \left(\frac{T}{|V|} \right) \right)$$

Jiang, Vardy (2004) は
$$rac{T}{|V|}$$
の上界を与えて GV 限界を $\log n$ 倍改善

Sala, Gabrys, Dolecek (ISIT 2014) も漸近的に log n 倍改善

However, the present work is focused on non-asymptotic bounds. To the best of the authors' knowledge, Theorem 1 is so far the strongest lower bound on deletion-correcting codes, with an improvement on the order of log n over all existing bounds, in both the asymptotic and non-asymptotic cases.

との記載はあるが・・・

平均挿入・削除球サイズ上界の改良による下界

Levenshtein (ISIT 2002) は

$$\left|L_{t,t}(\boldsymbol{x})\right| \le |D_t(\boldsymbol{x})| \cdot I_q (n-t,t)$$

から、以下を利用

$$V_d^{\text{ave}} \coloneqq \frac{1}{|\Sigma^n|} \sum_{\boldsymbol{x} \in \Sigma^n} \left| L_{t,t}(\boldsymbol{x}) \right| \le \frac{I_q(n-t,t)}{q^n} \sum_{\boldsymbol{x} \in \Sigma^n} \left| D_t(\boldsymbol{x}) \right| = \frac{I_q(n-t,t)^2}{q^t}$$

→ 平均挿入・削除球サイズ |L_{t,t}(x)| の上界の改良を目指す

|*L_{t,t}(x)*|の上界の改良

アイディア:数え上げの重複を考える

*D*_t(00011110000111) において,

x = 00011110000111の黒い部分を削除したものをyとおく.

オレンジのペアの片方を一つずつ削除すると、 その結果 z は $2^3 = 8$ 通りあり、すべて y の部分文字列

→ 各 |*I_t(z)*| において、 |*I_{t-3}(y)*| は重複して数え上げられている

→ 7|I_{t-3}(y)| は数えなくてよい

主結果その2:平均挿入・削除球サイズ上界の改良による下界

ラン数 $r(x) \ge 2$ のときオレンジペアが 1 つ以上あることを利用

Corollary 3. 任意の
$$1 \le t \le n$$
 に対し,以下を満たす
最小距離 $d = 2(t+1)$ の符号 C が存在.
$$A_q(n,d) \ge \left| \frac{q^{n+t}}{I_q(n-t,t)^2 - q^{-(n-t)} (q^n - q) I_q(n-t+1,t-1)} \right|$$

符号化率は Levnshtein(2002) と同様で、 $R \ge 1 + \delta - 2H_q(\delta)$

符号化率と相対最小距離のトレードオフ:q = 2

符号化率と相対最小距離のトレードオフ:q = 4

数値計算結果:上界

Th	eorem 2		1	n	d	UB of [12]	Theorem 1	The	eorem 2
	311		1 3	10	4	62 908	123 361		159 529
	93	4	1 1	10	6	17 792	26588		$34 \ 357$
	38	4	1 3	10	8	9 600	7 928		7 547
	17	4	1 3	10	10	5504	2 925		1 659
	9	4	1 3	10	12	11 504	$1 \ 257$		372
	5	4	1 3	10	14	51560	608		87
	4	4	1 3	10	16	173840	322		24
	3	4	1 3	10	18	418736	184		10
	181 643	4	1 2	20	4	30 003 945 118	$68\ 719\ 476\ 736$	$90\ 174$	299 388
	31 402	4	1 2	20	6	2 902 217 544	$8\ 197\ 663\ 580$	10 754 8	$599\ 022$
	7 772	4	1 2	20	8	752 550 391	$1 \ 402 \ 773 \ 785$	1 839 8	884 106
	2 452	4	1 2	20	10	$360\ 221\ 648$	306 647 351	316 ($287 \ 316$
	287	4	1 2	20	14	$146 \ 887 \ 008$	$24 \ 329 \ 793$	11	105 216
	54	4	1 2	20	18	108 563 408	$3 \ 094 \ 985$	2	409 222
	16	4	1 2	20	22	$2\ 517\ 203\ 000$	$549\ 256$		16 755
	1	4	1 2	20	26	$31 \ 608 \ 638 \ 744$	$125 \ 240$		851
	4	4	1 2	20	30	$192\ 278\ 071\ 952$	$34\ 771$		71
	3	4	1 2	20	34	587 772 208 784	11 321		15
67		4	1 2	20	38	$977\ 086\ 753\ 268$	4 206		7
107	009 000	4	1 4	40	10	$\approx 6 \ 113 \times 10^{15}$	$pprox 27$ 238 $ imes 10^{15}$	$\approx 36~015$	5×10^{15}
40	214 003 417 671	4	1 4	40	12	$\approx 1~502 \times 10^{15}$	$\approx 4 \ 001 \ \times 10^{15}$	$\approx 5~290$	$) \times 10^{15}$
49	417 071 644 775	4	1 4	40	16	$\approx 350 \ 829 \ \times 10^{12}$	≈ 135 888 $\times 10^{12}$	≈ 89.050	$) \times 10^{12}$
2	202 850	4	1 4	40	20	$\approx 133~526~\times 10^{12}$	$pprox 7$ 269 $ imes 10^{12}$	≈ 2.172	2×10^{12}
	1 105	4	1 4	40	30	≈ 14 173 $\times 10^{12}$	$\approx 18554 \times 10^9$	$\approx 296 \ 43$	87×10^{6}
	1 1 9 9	4	1 4	40	40	$\approx 34~641 \times 10^{15}$	$\approx 173 \ 431 \ \times 10^6$	≈ 6	59×10^{6}
	45	4	1 4	40	50	$\approx 10~426~\times 10^{18}$	$pprox 3$ 882 $ imes 10^6$		33 642
	4	4	1 4	40	60	$\approx 306~026~\times 10^{18}$	$164 \ 423 \ 496$		108
	3	4	1 4	40	70	$\approx 1~074 \times 10^{21}$	$11 \ 354 \ 434$		10
	2	4	1 4	40	78	≈ 1 207 $\times 10^{21}$	$1\ 777\ 074$		5
	_								

q	n	d	UB of [12]	Theorem	1 Theorem 2
2	10	4	190	17	0 311
2	10	6	148	5	1 93
2	10	8	148	2	1 38
2	10	10	156	1	<mark>1</mark> 17
2	10	12	292		<mark>6</mark> 9
2	10	14	528		<mark>4</mark> 5
2	10	16	772		<mark>3</mark> 4
2	10	18	936		2 3
2	20	4	$97 \ 453$	95 32	5 181 643
2	20	6	33 903	16 51	<mark>3</mark> 31 402
2	20	8	26 456	4 09	<mark>6</mark> 7 772
2	20	10	26 456	1 29	5 2 452
2	20	14	26 456	21	<mark>3</mark> 287
2	20	18	91 688	5	6 54
2	20	22	340556	2	0 16
2	20	26	709 300		9 7
2	20	30	961 048		5 4
2	20	34	1 038 520		3 3
2	20	38	1 048 198		2 2
2	40	4	47 498 012 376	52 357 696 56	$0 102 \ 167 \ 009 \ 660$
2	40	8	$2\ 063\ 338\ 945$	661 957 63	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2	40	12	1 130 893 408	25 385 91	6 49 417 671
2	40	16	$1\ 122\ 371\ 648$	1 867 56	7 2 644 775
2	40	20	1 122 371 648	$215 \ 90$	0 203 859
2	40	30	$13\ 097\ 807\ 352$	3 73	5 1 195
2	40	40	287 193 094 240	23	1 43
2	40	50	914 362 931 844	3	3 8
2	40	60	1 094 302 526 208		8 4
2	40	70	1 099 503 766 738		3 3
2	40	78	1 099 511 626 218		2

数値計算結果:下界

q	n	d	LB of [12]	LB of [14]	Theorem 5	Corollary 3	q	n	d	LB of [12]	LB of $[14]$	Theorem 5	Corollary 3
2	10	4	16	2	18	17	4	10	4	4 364	842	4 489	4 382
2	10	6	1	0	1	1	4	10	6	88	14	78	88
2	10	8	0	0	0	0	4	10	8	4	0	3	4
2	10	10	0	0	0	0	4	10	10	0	0	0	0
2	10	12	0	0	0	0	4	10	12	0	0	0	0
2	10	14	_			—	4	10	14				
2	10	16	_			—	4	10	16				
2	10	18	_				4	10	18				
2	10	20					4	10	20				
2	20	4	4755	783	4968	4777	4	20	4	1 181 952 838	$269 \ 953 \ 863$	1 200 316 339	$1 \ 183 \ 224 \ 781$
2	20	6	94	10	94	94	4	20	6	$5\ 608\ 964$	$1\ 260\ 800$	$5\ 257\ 096$	5 610 710
2	20	8	4	0	4	4	4	20	8	66 412	$11 \ 205$	$52\ 137$	66 419
2	20	10	0	0	0	0	4	20	10	1 558	167	937	1 558
2	20	12	0	0	0	0	4	20	12	64	3	27	64
2	20	14	0	0	0	0	4	20	14	4	0	1	4
2	20	16	0	0	0	0	4	20	16	0	0	0	0
2	20	18	0	0	0	0	4	20	18	0	0	0	0
2	20	20	0	0	0	0	4	20	20	0	0	0	0
2	20	22	0	0	0	0	4	20	22	0	0	0	0
2	40	4	$1 \ 308 \ 163 \ 745$	$244 \ 663 \ 405$	1 339 190 459	$1 \ 309 \ 722 \ 010$	4	40	10	5 251 871 945 006	$968 \ 893 \ 684 \ 250$	$4\ 033\ 370\ 043\ 313$	5 251 878 194 182
2	40	6	6 524 894	881 891	$6\ 532\ 808$	$6\ 526\ 482$	4	40	12	4 408 536 581	$5\ 621\ 632\ 730$	$28\ 003\ 006\ 604$	4 408 537 815
2	40	8	$76\ 814$	$6 \ 032$	71 601	76 818	4	40	14	562 976 279	$46\ 013\ 071$	$281 \ 585 \ 593$	562 976 323
2	40	10	1 687	68	1 396	1 687	4	40	16	10 353 270	506 907	$3\ 886\ 646$	10 353 271
2	40	12	60	1	42	60	4	40	18	263 527	$7\ 256$	70 970	263 527
2	40	14	3	0	1	3	4	40	20	9 010	131	1 673	9 010
2	40	16	0	0	0	0	4	40	22	404	2	50	404
2	40	18	0	0	0	0							
2	40	20	0	0	0	0							
2	40	22	0	0	0	0							

- [2] B. Bukh, V. Guruswami, and J. Håstad. An improved bound on the fraction of correctable deletions. *IEEE Trans. Inf. Theory*, 63(1):93–103, 2017.
- [4] D. Cullina and N. Kiyavash. An improvement to Levenshtein's upper bound on the cardinality of deletion correcting codes. *IEEE Trans. Inf. Theory*, 60(7):3862–3870, 2014.
- [5] V. Guruswami, X. He, and R. Li. The zero-rate threshold for adversarial bit-deletions is less than 1/2. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 727–738. IEEE, 2021.
- [7] T. Hayashi and K. Yasunaga. On the list decodability of insertions and deletions. *IEEE Trans. Inf. Theory*, 66(9):5335–5343, 2020.
- [10] A. A. Kulkarni and N. Kiyavash. Nonasymptotic upper bounds for deletion correcting codes. *IEEE Trans. Inf. Theory*, 59(8):5115–5130, 2013.
- [11] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.
- [12] V. I. Levenshtein. Bounds for deletion/insertion correcting codes. In *Proceedings IEEE International Symposium on Information Theory*, page 370, 2002.
- [14] F. Sala, R. Gabrys, and L. Dolecek. Gilbert-varshamov-like lower bounds for deletioncorrecting codes. In 2014 IEEE Information Theory Workshop, ITW 2014, Hobart, Tasmania, Australia, November 2-5, 2014, pages 147–151. IEEE, 2014.

数値計算結果:上界

q	n	d	UB of [12]	Theorem 1	Theorem 2	q	n	d	UB of [12]	Theorem 1	Theorem 2
2	10	4	190	170	311	4	10	4	62 908	123 361	159 529
2	10	6	148	51	93	4	10	6	17 792	26588	$34 \ 357$
2	10	8	148	21	38	4	10	8	9 600	$7 \ 928$	7 547
2	10	10	156	11	17	4	10	10	5 504	$2 \ 925$	1 659
2	10	12	292	6	9	4	10	12	11 504	$1 \ 257$	372
2	10	14		—	5	4	10	14		—	87
2	10	16			4	4	10	16		—	24
2	10	18		—	3	4	10	18		—	10
2	10	20			—	4	10	20		—	
2	20	4	$97\ 453$	95 325	$181 \ 643$	4	20	4	30 003 945 118	$68\ 719\ 476\ 736$	$90\ 174\ 299\ 388$
2	20	6	33 903	16 513	31 402	4	20	6	2 902 217 544	$8\ 197\ 663\ 580$	$10\ 754\ 599\ 022$
2	20	8	26 456	4 096	7 772	4	20	8	752 550 391	$1\ 402\ 773\ 785$	$1 \ 839 \ 884 \ 106$
2	20	10	26 456	1 295	$2\ 452$	4	20	10	360 221 648	306 647 351	$316\ 287\ 316$
2	20	12	26 456	490	768	4	20	12	226 003 920	$80 \ 420 \ 755$	60 876 276
2	20	14	26 456	213	287	4	20	14	146 887 008	$24 \ 329 \ 793$	11 105 216
2	20	16	41 520	104	118	4	20	16	79 778 144	$8\ 267\ 148$	2 003 849
2	20	18	91 688	56	54	4	20	18	108 563 408	$3 \ 094 \ 985$	409 222
2	20	20	190 416	32	28	4	20	20	536 774 720	$1\ 258\ 226$	79 926
2	20	22	340556	20	16	4	20	22	$2\ 517\ 203\ 000$	$549\ 256$	16 755
2	40	4	47 498 012 376	$52 \ 357 \ 696 \ 560$	$102 \ 167 \ 009 \ 660$	4	40	10	$6\ 113\ 592\ 833\ 576\ 549\ 294$	$27\ 238\ 444\ 999\ 469\ 732\ 769$	$36\ 015\ 920\ 136\ 083\ 097\ 898$
2	40	6	6 561 107 408	4 865 095 698	$9\ 488\ 059\ 400$	4	40	12	$1 \ 502 \ 985 \ 120 \ 942 \ 552 \ 080$	$4 \ 001 \ 768 \ 904 \ 009 \ 233 \ 099$	$5\ 290\ 974\ 980\ 372\ 832\ 578$
2	40	8	$2\ 063\ 338\ 945$	661 957 632	$1 \ 290 \ 214 \ 063$	4	40	14	694 833 352 099 147 362	$690\ 127\ 171\ 352\ 978\ 162$	628 749 366 837 598 021
2	40	10	$1\ 279\ 636\ 864$	117 292 187	$228 \ 473 \ 245$	4	40	16	350 829 440 062 284 900	$135\ 888\ 933\ 076\ 115\ 960$	89 050 511 830 036 160
2	40	12	1 130 893 408	25 385 916	$49 \ 417 \ 671$	4	40	18	205 583 936 785 834 080	$29 \ 940 \ 446 \ 039 \ 885 \ 620$	13 234 636 413 304 032
2	40	14	$1\ 122\ 371\ 648$	6 445 783	$12 \ 539 \ 381$	4	40	20	133 526 342 747 906 144	$7\ 269\ 429\ 537\ 145\ 809$	2 172 089 508 608 137
2	40	16	1 122 371 648	1 867 567	$2\ 644\ 775$				1		

754 358

203 859

 $65\ 257$

 $605 \ 094$

 $215 \ 900$

83 817

 $1\ 122\ 371\ 648$

 $1\ 122\ 371\ 648$

 $1 \ 122 \ 371 \ 648$

40 18

 $2 \quad 40 \quad 22$

20

 $\begin{array}{ccc} 2 & 40 \\ 2 & 40 \end{array}$