挿入や削除を訂正する符号の サイズの上界・下界

東京工業大学

エクスパンダーグラフの新しい構成手法の確立とその応用2 @九州大学 IMI 2023.9.7

自己紹介

名前:安永憲司

所属:東京工業大学 情報理工学院 数理・計算科学系

研究分野:理論計算機科学

• 主に, 暗号理論

• 細々と, 誤り訂正符号

• これから,計算量理論

挿入と削除

Levenshtein 距離(編集距離)

 $d_L(x, y) := \min \{ x e y c g 換 f a n c 必要な挿入・削除数 \}$

- Ø. $d_L(000, 111) = 6$, $d_L(101, 010) = 2$
- $|\mathbf{x}| = |\mathbf{y}| = n \mathcal{O}$ とき、 $0 \le d_L(\mathbf{x}, \mathbf{y}) \le 2n$
- $d_L(x, y) = |x| + |y| 2LCS(x, y)$ (LCS(x, y): x と y の最長共通部分系列の長さ)

符号 *C* の最小 Levenshtein 距離: $d_L(C) \coloneqq \min_{c_1 \neq c_2 \in C} d_L(c_1, c_2)$

 $d_L(C) \ge d$ のとき, C は合計 $t \le \left| \frac{d-1}{2} \right|$ 個の挿入・削除を訂正できる

• $C \subseteq \Sigma^n$ のとき、 $d_L(C)$ は偶数で、 $t \leq \frac{d_L(C)}{2} - 1$ 個を訂正できる

• 相対最小距離は
$$\frac{d_L(C)}{2n} \in [0,1]$$

符号の相対最小距離 ≥ δ → δ割合未満の挿入・削除を訂正

最良の符号サイズ $A_q(n,d)$

 $A_q(n,d) \coloneqq \max\{ |C| : \exists C \subseteq \Sigma^n \text{ s.t. } |\Sigma| = q, d_L(C) \ge d \}$

- A_q(n,d)の上界 → 符号として存在しない領域
- *A_q(n,d)*の下界 → 符号として存在しうる領域

漸近的な評価

- 符号列 {C_n}_nの符号長 n → ∞ の場合の振る舞いを評価
- $A_q(n,d)$ を達成する符号 $C \subseteq \Sigma^n$, $|\Sigma| = q$ に対し,

符号化率 $R = \frac{\log_q |C|}{n}$ と相対最小距離 $\delta = \frac{d_L(C)}{2n}$ の

エクスパンダーグラフとの関わり

- Hamming 距離(通常の符号)
 - 定数レート符号で線形時間符号化・復号
 - 符号の最小距離の増幅
 - リスト復号可能符号との等価性

- Levenshtein 距離(挿入・削除訂正符号)
 - 直接的に関係する研究はこれまでない
 - 線形時間符号化・復号は未解決(距離を測るのに O(n²))
 - 最小距離が増幅するかも不明

主結果のトレードオフ

符号化率と相対最小距離のトレードオフ:q = 2

8

符号化率と相対最小距離のトレードオフ:q = 4

9

基本的な事実(1/2)

挿入球 $I_t(\mathbf{x}) \coloneqq \{\mathbf{x} \in \Sigma^n \ C \ t \$ 挿入してできる文字列 $\mathbf{y} \in \Sigma^{n+t} \}$ • $|I_t(\mathbf{x})| = \sum_{i=0}^t \binom{n+t}{i} (q-1)^i \coloneqq I_q(n,t) \approx q^{(n+t)H_q(\frac{t}{n+t})}$

削除球 $D_t(\mathbf{x}) \coloneqq \{\mathbf{x} \in \Sigma^n \text{ から } t \text{ 削除してできる文字列 } \mathbf{y} \in \Sigma^{n-t} \}$ • $|D_t(\mathbf{x})| \leq {n \choose t}$

• xのラン数 = $r(x) \ge 2t$ のとき, $\sum_{i=0}^{t} \binom{r(x)-t}{i} \le |D_t(x)| \le \binom{r(x)+t-1}{t}$

• 例. r(0000) = 1, r(0011) = 2, r(0101) = 4

• $R_q(n,r) \coloneqq \{ \mathbf{x} \in \Sigma^n : r(x) = r \}, \ |R_q(n,r)| = \binom{n-1}{r-1} q(q-1)^{r-1}$

基本的な事実(2/2)

挿入削除球 $L_{t,s}(\mathbf{x}) \coloneqq \{\mathbf{x} \in \Sigma^n \subset t$ 削除・s 挿入でできる文字列 $\mathbf{y} \in \Sigma^{n-t+s}\}$

• $L_{t,0}(x) = D_t(x), L_{0,t}(x) = I_t(x)$

$|L_{t,t}(\mathbf{x})|$ の緊密な評価式は未解決問題 • $|L_{t,t}(\mathbf{x})| \le |D_t(\mathbf{x})| \cdot I_q(n-t,t)$ が上界では最も良い??

二重数え上げ (double counting) より,以下が成り立つ

$$\sum_{\mathbf{y}\in\Sigma^{n+t}}|D_t(\mathbf{y})| = \sum_{\mathbf{x}\in\Sigma^n}|I_t(\mathbf{x})| = q^n \cdot I_q(n,t)$$

球充填 (sphere-packing) タイプの上界

Theorem 1. 最小 Levenshtein 距離
$$d = 2(t+1)$$
 の $C \subseteq \Sigma^n$ に対し,
 $|C| \le \left| \frac{q^{n+t}}{I_q(n,t)} \right|$

証明:各 $c \in C$ に対し, $I_t(c) \subseteq \Sigma^{n+t}$ は互いに交わらないため

Corollary 1. 最小 Levenshtein 距離
$$\delta n$$
, 符号化率 $R \ \mathcal{O} \ C \subseteq \Sigma^n$ に対し,
$$R \le (1+\delta) \left(1 - H_q \left(\frac{\delta}{1+\delta} \right) \right) + o(1)$$

主結果その1: Elias タイプの上界

Theorem 2. 最小 Levenshtein 距離
$$d < 2n \text{ O} C \subseteq \Sigma^n$$
 について,
 $t < \frac{d}{2-d/n}$
を満たす任意の $t \ge 0$ に対し,
 $|C| \le \left| \frac{(n+t)d}{(n+t)d - 2nt} \cdot \frac{q^{n+t}}{I_q(n,t)} \right|$

Corollary 2. 最小 Levenshtein 距離 δn , 符号化率 R の $C \subseteq \Sigma^n$ に対し, $R \leq \frac{1}{1-\delta} (1-H_q(\delta)) + o(1)$

Theorem 2 の証明

• 二重数え上げを, 符号 C との共通部分に適用すると,

$$\sum_{\mathbf{y}\in\Sigma^{n+t}} |D_t(\mathbf{y}) \cap C| = \sum_{\mathbf{x}\in C} |I_t(\mathbf{x})| = |C| \cdot I_q(n,t)$$

- ランダムに $y \in \Sigma^{n+t}$ を選ぶと、 $|D_t(y) \cap C| \ge \frac{|C| \cdot I_q(n,t)}{q^{n+t}}$ を満たす $y \in \Sigma^{n+t}$ が存在
- |D_t(y) ∩ C| は、t 挿入に対するリスト復号のリストサイズ
- [Hayashi, Yasunaga (IEEE IT 2020)] のリスト復号可能性を適用

•
$$t < \frac{d}{2-d/n}$$
 に対し, $|D_t(\mathbf{y}) \cap C| \le \frac{(n+t)d}{(n+t)d-2nt}$

Hamming 距離の符号に対する上界の適用

符号 *C* の最小 Hamming 距離 ≤ *d* Hamming 距離での $A_q(n,d)$ の上界 → *C* の最小 Levenshtein 距離 ≤ 2*d* → Levenshtein 距離での $A_q(n,d)$ の上界

Theorem 3. 最小 Levenshtein 距離 δn , 符号化率 R の $C \subseteq \Sigma^n$ に対し, $R \leq 1 - H_q (\theta - \sqrt{\theta(\theta - \delta)}) + o(1)$ (Elias 限界) $R \leq H_q \left(\frac{1}{q} (q - 1 - (q - 2)\delta - 2\sqrt{\delta(1 - \delta)(q - 1)})\right) + o(1)$ (MRRW 限界) ここで、 $0 \leq \delta \leq \theta = 1 - \frac{1}{q}$

符号化率と相対最小距離のトレードオフ:q = 2

17

符号化率と相対最小距離のトレードオフ:q = 4

数値計算結果:上界

q	n	d	[Lev02]	[KK13]	Theorem 1	Theorem 2		
2	20	4	$97 \ 453$	55 206	181 643			
2	20	10	26 456	2535	1 295	2452		
2	20	20	$190 \ 416$	1059	32	28		
2	20	30	961 048		5	4		
2	40	4	$47 \ 498 \ 012 \ 376$	28 192 605 878	$52 \ 357 \ 696 \ 560$	$102\ 167\ 009\ 660$		
2	40	10	$1 \ 279 \ 636 \ 864$	9 880 934	$117 \ 292 \ 187$	228 473 245		
2	40	20	$1 \ 122 \ 371 \ 648$	$3\ 203\ 459$	215 900	203 859		
2	40	30	$13 \ 097 \ 807 \ 352$	298 539	3735	1 195		
2	40	40	$287\ 193\ 094\ 240$	$1 \ 048 \ 713$	231	43		
4	20	4	$30\ 003\ 945\ 118$	19 289 677 788	$68\ 719\ 476\ 736$	$90\ 174\ 299\ 388$		
4	20	10	$360\ 221\ 648$	25 002 768	306 647 351	$316 \ 287 \ 316$		
4	20	20	$536\ 774\ 720$	$1 \ 645 \ 315$	$1\ 258\ 226$	79 926		
4	20	30	$192\ 278\ 071\ 952$		34 771	71		
4	40	4	≈ 14 843 $\times 10^{18}$	$\approx 10 \ 332 \times 10^{18}$	$pprox 38$ 997 $ imes 10^{18}$	≈ 51 574 $\times 10^{18}$		
4	40	10	$pprox 6 \ 113 \ imes 10^{15}$	$\approx 461 \ 805 \ \times 10^{12}$	$pprox 27$ 238 $ imes 10^{15}$	$pprox 36 \ 015 \ imes 10^{15}$		
4	40	20	$\approx 133 \ 526 \ \times 10^{12}$	$\approx 158 \ 374 \ \times 10^9$	$pprox 7 269 \times 10^{12}$	$\approx 2 \ 172 \ \times 10^{12}$		
4	40	40	$\approx 34~641 \times 10^{15}$	$\approx 2 \ 123 \ \times 10^9$	$\approx 173 \ 431 \ \times 10^6$	$\approx 69 \times 10^6$		
4	40	60	$\approx 306 \ 026 \ \times 10^{18}$		$164 \ 423 \ 496$	108		

[KK13] A. A. Kulkarni and N. Kiyavash. Nonasymptotic upper bounds for deletion correcting codes. *IEEE Trans. Inf. Theory*, 59(8):5115–5130, 2013.

[KK13] との漸近的な比較

[Hayashi, Yasunaga (IEEE IT 2020)]の リスト復号可能性

List Decoding

- Decoder outputs a small list of codewords so that the list contains the transmitted codeword
- Extensively studied in Hamming metric
 - C is (t, ℓ) -list decodable (in Hamming metric) $\Leftrightarrow |B_H(\boldsymbol{v}, t) \cap C| \leq \ell$ for any $\boldsymbol{v} \in \Sigma^n$
 - $B_H(\boldsymbol{v},t)$: Hamming ball of radius t centered at \boldsymbol{v}
 - t : list-decoding radius, ℓ : list size
- Johnson bound gives a bound on list size for $t \ge d/2$

$$\ell \le qnd$$
 if $t < n - \sqrt{n(n-d)}$

q : alphabet size, d : minimum Hamming distance of C

Our Results

- Johnson-type bound in Levenshtein metric is derived
 - The result by Wachter-Zeh (ISIT 2017) has some flaws
 - Our bound is obtained by a similar approach
- The bound implies that, as long as $\ell = poly(n)$,
 - ∃ binary code of rate Ω(1) correcting 0.707-frac. of insertions;
 - \forall constant $\tau_I > 0$ and $\tau_D \in [0,1)$, $\exists q$ -ary code of rate $\Omega(1)$ and q = O(1) correcting τ_I -frac. of ins. and τ_D -frac. of del.
- Plotkin-type bound on code size in Levenshtein metric
 - By a simple application of Johnson-type bound

(Main Technical Lemma) Johnson-type Bound

Lemma 1

1

· · ·

$$\begin{split} \mathcal{C} &\subseteq \Sigma^n \text{ s.t. } d_L(\mathcal{C}) = d \\ \text{For non-negative integers } t_I, t_D \leq n, N = n + t_I - t_D, \\ \text{and } v \in \Sigma^N, \text{ let} \\ \ell &:= |B_L(v, t_D, t_I) \cap \mathcal{C}|. \\ \text{If } t_I < \left(\frac{d}{2} - t_D\right) \frac{n - t_D}{n - \frac{d}{2}}, \text{ then } \ell \leq \frac{N\left(\frac{d}{2} - t_D\right)}{N\left(\frac{d}{2} - t_D\right) - t_I(n - t_D)} \end{split} \\ B_L(v, t_D, t_I) : \text{ the set of words obtained from } v \text{ by } \leq t_D \text{ insertions and } \leq t_I \text{ deletions} \end{split}$$

(
$$t_I = t, t_D = 0$$
 とすると) $t < \frac{d}{2-d/n}$ ならば、 $|D_t(\mathbf{y}) \cap C| = \ell \leq \frac{(n+t)d}{(n+t)d-2nt}$ (Theorem 2 で利用)

Proof Idea

- Let {c₁, ..., c_l} be the set of codewords that can be transformed to v by t_l insertions and t_D deletions
- Consider the value

 $\lambda :=$ Sum of pairwise distances between ℓ codewords

- "Double Counting" is applied to λ :
 - 1. Row by row \rightarrow Lower bound from $d_L(c_i, c_j) \ge d$
 - 2. Column by column \rightarrow Upper bound from $d_L(c_i, c_j) \leq d_L(c_i, v) + d_L(v, c_j)$
 - More sophisticated upper bound is used

Proof of Theorem 1

- For $\boldsymbol{v} \in \Sigma^N$, let $B_L(\boldsymbol{v}, t_D, t_I) \cap C = \{\boldsymbol{c}_1, \dots, \boldsymbol{c}_\ell\}$
- For each c_i , define $D^{(i)} \subseteq [n] = \{1, ..., n\}$ and $E^{(i)} \subseteq [N] = \{1, ..., N\}$ s.t. c_i can be transformed to v by
 - 1. Deleting symbols in $D^{(i)}$ from c_i ; and
 - 2. Inserting symbols in $E^{(i)}$

$$c_i \square^{(i)} = \square^{(i)} v$$

• We can choose s.t. $|D^{(i)}| = t_D$, $|E^{(i)}| = t_I$

- c_i can be transformed to c_j by
 - 1. Deleting symbols in $D^{(i)}$ from c_i
 - 2. Inserting symbols in $E^{(i)}$ to get v
 - 3. Deleting symbols in $E^{(j)}$ from v
 - 4. Inserting symbols in $D^{(j)}$ to get c_j

- Steps 2-3 can be simplified as
 - 1. Deleting symbols in $D^{(i)}$ from c_i
 - 2. Inserting symbols in $E^{(i)} \setminus E^{(j)}$ to get $v_{|[N] \setminus (E^{(i)} \cap E^{(j)})}$
 - 3. Deleting symbols in $E^{(j)} \setminus E^{(i)}$ from $v_{|[N] \setminus (E^{(i)} \cap E^{(j)})}$
 - 4. Inserting symbols in $D^{(j)}$ to get c_j
- Thus, we have that

 $d_L(\mathbf{c}_i, \mathbf{c}_j) \le |D^{(i)}| + |E^{(i)} \setminus E^{(j)}| + |E^{(j)} \setminus E^{(i)}| + |D^{(j)}|$

- Define $\lambda \coloneqq \sum_{i \in [\ell]} \sum_{j \in [\ell] \setminus \{i\}} d_L(\boldsymbol{c}_i, \boldsymbol{c}_j)$
- We know that

•
$$\lambda \geq \ell(\ell-1)d$$
 (by $d_L(\mathbf{c}_i, \mathbf{c}_j) \geq d$)
• $\lambda \leq \sum_{i \in [\ell]} \sum_{j \in [\ell] \setminus \{i\}} {\binom{|D^{(i)}| + |E^{(i)} \setminus E^{(j)}|}{+ |E^{(j)} \setminus E^{(i)}| + |D^{(j)}|}}$

• Hence, we have

$$\ell(\ell-1)d \le \sum_{i \in [\ell]} \sum_{j \in [\ell] \setminus \{i\}} \binom{|D^{(i)}| + |E^{(i)} \setminus E^{(j)}|}{+ |E^{(j)} \setminus E^{(i)}| + |D^{(j)}|}$$

• We can show that

•
$$\sum_{i \in [\ell]} \sum_{j \in [\ell] \setminus \{i\}} \left(\left| D^{(i)} \right| + \left| D^{(j)} \right| \right) = 2(\ell - 1) \sum_{k \in [n]} X_k$$

•
$$\sum_{i \in [\ell]} \sum_{j \in [\ell] \setminus \{i\}} \left(\left| E^{(i)} \setminus E^{(j)} \right| + \left| E^{(j)} \setminus E^{(i)} \right| \right) = 2 \sum_{k' \in [N]} Y_{k'} (\ell - Y_{k'})$$

• Thus, we have $\ell(\ell-1)d \le 2(\ell-1)\sum_{k\in[n]}X_k + 2\sum_{k'\in[N]}Y_{k'}(\ell-Y_{k'})$

• By using
$$\sum_{k \in [n]} X_k = \ell t_D$$
, $\sum_{k' \in [N]} Y_{k'} = \ell t_I$, we can show that

$$\ell \leq \frac{N\left(\frac{d}{2} - t_D\right)}{N\left(\frac{d}{2} - t_D\right) - t_I(n - t_D)}$$

Both the numerator and the denominator are positive by the assumption.
 QED

平均球サイズによる下界

Tolhuizen (IEEE IT 1997). *X* 上の距離関数
$$\rho: X \times X \to \mathbb{Z}$$
 に対し,
• *x* 中心の半径 *d* の球サイズ $V_d(x) \coloneqq |\{y \in X : \rho(x, y) \le d\}|$
• 平均球サイズ $V_d^{\text{ave}} \coloneqq \frac{1}{|X|} \sum_{x \in X} V_d(x)$
のとき,最小距離 *d* の符号 *C* として, $|C| \ge \frac{|X|}{V_{d-1}^{\text{ave}}}$ が存在

Levenshtein (ISIT 2002). 任意の $1 \le t \le n$ に対し,以下を満たす 最小 Levenshtein 距離 $d = 2(t+1) = 2\delta n$ の符号 *C* が存在. $|C| \ge \frac{q^{n+t}}{I_q(n-t,t)^2}$ つまり 符号化率 $R \ge 1 + \delta - 2H_q(\delta)$

グラフ理論による下界

集合 *X* ⊆
$$\Sigma^n$$
 に対し、グラフ *G* = (*V*,*E*) を
• 各 *x* ∈ *X* が頂点、 $d_L(x, y) \le d - 1$ なら辺 (*x*, *y*) が存在
と定めると、

• *G*の独立集合の最大サイズ =
$$\alpha(G) \Leftrightarrow A_q(n,d) = \alpha(G)$$

- 独立数 (independence number) α(G) に関する
 グラフ理論の結果が利用できる
 - Turán の定理より GV 限界が導かれる (Tohluizen (1997))
 - Jiang, Vardy (IEEE IT 2004) による GV 限界の改良もこれ

Caro-Wei 限界による下界

Caro-Wei 限界

$$\alpha(G) \ge \sum_{x \in V} \frac{1}{1 + \deg(x)}$$

Theorem 5. 任意の
$$d = 2(t+1) < n$$
, 整数 $1 \le r \le n$ に対し,
 $A_q(n,d) \ge \left| \frac{\left(q^n - \sum_{i=r}^n \binom{n-1}{i-1}q(q-1)^{i-1}\right)^2}{I_q(n-t,t)\left(q^{n-t} \cdot I_q(n,t) - \sum_{i=r}^n \binom{n-1}{i-1}q(q-1)^{i-1} \cdot \left(\sum_{j=1}^t \binom{i-t}{j}\right)\right)} \right|$

証明:集合 *X* ⊆ Σ^n をラン数 *r* 以上の文字列集合とし, Caro-Wei 限界に deg(*x*) ≤ $|L_{t,t}(\mathbf{x})| \le |D_t(\mathbf{x})| \cdot I_q$ (*n* − *t*, *t*) を適用 Sala, Gabrys, Dolecek (ISIT 2014)の下界式(式自体は省略)

グラフの三角形数 T を用いた以下を利用(Δは最大次数)

$$\alpha(G) \ge \frac{|V|}{10\Delta} \left(\log \Delta - \frac{1}{2} \log \left(\frac{T}{|V|} \right) \right)$$

Jiang, Vardy (2004) は $\frac{T}{|V|}$ の上界を与えて GV 限界を $\log n$ 倍改善

Sala, Gabrys, Dolecek (ISIT 2014) も漸近的に log n 倍改善??

However, the present work is focused on non-asymptotic bounds. To the best of the authors' knowledge, Theorem 1 is so far the strongest lower bound on deletion-correcting codes, with an improvement on the order of log n over all existing bounds, in both the asymptotic and non-asymptotic cases.

Alon, Bourla, Graham, He, Kravitz (IEEE IT 2023) が上記を使った改善

Levenshtein (ISIT 2002) は

$$\left|L_{t,t}(\boldsymbol{x})\right| \leq |D_t(\boldsymbol{x})| \cdot I_q (n-t,t)$$

から、以下を利用

$$V_d^{\text{ave}} \coloneqq \frac{1}{|\Sigma^n|} \sum_{\boldsymbol{x} \in \Sigma^n} \left| L_{t,t}(\boldsymbol{x}) \right| \le \frac{I_q(n-t,t)}{q^n} \sum_{\boldsymbol{x} \in \Sigma^n} \left| D_t(\boldsymbol{x}) \right| = \frac{I_q(n-t,t)^2}{q^t}$$

→ 挿入・削除球サイズ |L_{t,t}(x) の上界の改良を目指す

 $|L_{t,t}(\mathbf{x})|$ の上界の改良

アイディア:数え上げの重複を考える

D_t(00011110000111) において,

x = 00011110000111の黒い部分を削除したものをyとおく.

オレンジのペアの片方を一つずつ削除すると、 その結果 z は $2^3 = 8$ 通りあり、すべて y の部分文字列

→ 各 |I_t(z)| において、 |I_{t-3}(y)| は重複して数え上げられている

→ 7|I_{t-3}(y)| は数えなくてよい

主結果その2:平均挿入・削除球サイズ上界の改良による下界

ラン数 $r(x) \ge 2$ のときオレンジペアが 1 つ以上あることを利用

Corollary 3. 任意の
$$1 \le t \le n$$
 に対し,以下を満たす
最小距離 $d = 2(t+1)$ の符号 C が存在.
$$A_q(n,d) \ge \left| \frac{q^{n+t}}{I_q(n-t,t)^2 - (q^t - q^{-n+t+1})I_q(n-t+1,t-1)} \right|$$

符号化率は Levenshtein(2002) と同様で、 $R \ge 1 + \delta - 2H_q(\delta)$

符号化率と相対最小距離のトレードオフ:q = 2

符号化率と相対最小距離のトレードオフ:q = 4

45

数値計算結果:上界

q	n	d	[Lev02]	[KK13]	Theorem 1	Theorem 2
2	20	4	$97 \ 453$	55 206	95 325	181 643
2	20	10	26 456	2535	1 295	2452
2	20	20	$190 \ 416$	1 059	32	28
2	20	30	961 048		5	4
2	40	4	$47 \ 498 \ 012 \ 376$	28 192 605 878	$52 \ 357 \ 696 \ 560$	$102\ 167\ 009\ 660$
2	40	10	$1 \ 279 \ 636 \ 864$	9 880 934	$117 \ 292 \ 187$	228 473 245
2	40	20	$1 \ 122 \ 371 \ 648$	$3\ 203\ 459$	215 900	203 859
2	40	30	$13 \ 097 \ 807 \ 352$	298 539	3735	1 195
2	40	40	$287\ 193\ 094\ 240$	$1 \ 048 \ 713$	231	43
4	20	4	$30\ 003\ 945\ 118$	19 289 677 788	$68\ 719\ 476\ 736$	$90\ 174\ 299\ 388$
4	20	10	$360\ 221\ 648$	25 002 768	306 647 351	$316 \ 287 \ 316$
4	20	20	$536\ 774\ 720$	$1 \ 645 \ 315$	$1\ 258\ 226$	79 926
4	20	30	$192\ 278\ 071\ 952$		34 771	71
4	40	4	≈ 14 843 $\times 10^{18}$	$\approx 10\ 332\ \times 10^{18}$	$pprox 38$ 997 $ imes 10^{18}$	≈ 51 574 $\times 10^{18}$
4	40	10	$pprox 6 \ 113 \ imes 10^{15}$	$\approx 461 \ 805 \ \times 10^{12}$	$pprox 27$ 238 $ imes 10^{15}$	$pprox 36 \ 015 \ imes 10^{15}$
4	40	20	$\approx 133 \ 526 \ \times 10^{12}$	$\approx 158 \ 374 \ \times 10^9$	$pprox 7 269 \times 10^{12}$	$\approx 2 \ 172 \ \times 10^{12}$
4	40	40	$\approx 34~641 \times 10^{15}$	$\approx 2 \ 123 \ \times 10^9$	$\approx 173 \ 431 \ \times 10^6$	$\approx 69 \times 10^6$
4	40	60	$\approx 306 \ 026 \ \times 10^{18}$		$164 \ 423 \ 496$	108

数値計算結果:下界

q	n	d	Lev02] [SGD14]] Theorem 5	Core	Corollary 3		n	d	[Lev02]] [SGD14] Theorem 5		Corollary 3
2	10	4	16	2	18		17	4	10	4	4 364	84	2 4 489		4 382
2	10	6	1	0	1		1	4	10	6	88	1^{4}	1 78		88
2	10	8	0	0	0		0	4	10	8	4) 3		4
2	10	10	0	0	0		0	4	10	10	0) 0		0
2	10	12	0	0	0		0	4	10	12	0) 0		0
2	10	14	_					4	10	14	_				
2	10	16	_					4	10	16	_				
2	10	18	_					4	10	18					
2	10	20						4	10	20	_				
2	20	4	4755	783	4968		4777	4	20	4	1 181 952 838	269 953 863	3 1 200 316 339	1	183 224 781
2	20	6	94	10	94		94	4	20	6	$5\ 608\ 964$	1 260 80	5 257 096		5 610 710
2	20	8	4	0	4		4	4	20	8	66 412	11 20	5 52 137		66 419
2	20	10	0	0	0		0	4	20	10	1 558	16	7 937		1 558
2	20	12	0	0	0		0	4	20	12	64		3 27		64
2	20	14	0	0	0		0	4	20	14	4) 1		4
2	20	16	0	0	0		0	4	20	16	0) 0		0
2	20	18	0	0	0		0	4	20	18	0) 0		0
2	20	20	0	0	0		0	4	20	20	0) 0		0
2	20	22	0	0	0		0	4	20	22	0) 0		0
2	40	4	1 308 163 745	$244 \ 663 \ 405$	1 339 190 459	1 309 7	722 010	4	40	10	5 251 871 945 006	968 893 684 25	0 4 033 370 043 313	5 251 8	878 194 182
2	40	6	6 524 894	881 891	6 532 808	6 5	526 482	4	40	12	4 408 536 581	$5\ 621\ 632\ 730$	28 003 006 604	4 4	408 537 815
2	40	8	76 814	6 032	71 601		76 818	4	40	14	562 976 279	$46\ 013\ 07$	l 281 585 593	ļ	562 976 323
2	40	10	1 687	68	1 396		1 687	4	40	16	10 353 270	506 90'	3 886 646		10 353 271
2	40	12	60	1	42		60	4	40	18	263 527	7 25	5 70 970		263 527
2	40	14	3	0	1		3	4	40	20	9 010	13	1 673		9 010
2	40	16	0	0	0		0	4	40	22	404		2 50		404
2	40	18	0	0	0		0				1				
2	40	20	0	0	0		0								
2	40	22	0	0	0		0								47

[KK13] との漸近的な比較

まとめ

挿入・削除を訂正する最良符号のサイズの上界・下界を導出

- 球充填タイプの上界 (Theorem 1, Corollary 1)
- Elias タイプの上界 (Theorem 2, Corollary 2)
 - [HY20] のリスト復号可能性を利用
- [Lev02] を改良した下界 (Corollary 3)
 - 平均挿入・削除球サイズ上界の改良を利用
 - 漸近的には [Lev02] と等価

未解決問題

- エクスパンダーグラフの活用
- 下界の漸近的な改善(ランダム符号化は最適か??)

- [2] B. Bukh, V. Guruswami, and J. Håstad. An improved bound on the fraction of correctable deletions. *IEEE Trans. Inf. Theory*, 63(1):93–103, 2017.
- [4] D. Cullina and N. Kiyavash. An improvement to Levenshtein's upper bound on the cardinality of deletion correcting codes. *IEEE Trans. Inf. Theory*, 60(7):3862–3870, 2014.
- [5] V. Guruswami, X. He, and R. Li. The zero-rate threshold for adversarial bit-deletions is less than 1/2. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 727–738. IEEE, 2021.
- [7] T. Hayashi and K. Yasunaga. On the list decodability of insertions and deletions. *IEEE Trans. Inf. Theory*, 66(9):5335–5343, 2020.
- [10] A. A. Kulkarni and N. Kiyavash. Nonasymptotic upper bounds for deletion correcting codes. *IEEE Trans. Inf. Theory*, 59(8):5115–5130, 2013.
- [11] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.
- [12] V. I. Levenshtein. Bounds for deletion/insertion correcting codes. In *Proceedings IEEE International Symposium on Information Theory*, page 370, 2002.
- [14] F. Sala, R. Gabrys, and L. Dolecek. Gilbert-varshamov-like lower bounds for deletioncorrecting codes. In 2014 IEEE Information Theory Workshop, ITW 2014, Hobart, Tasmania, Australia, November 2-5, 2014, pages 147–151. IEEE, 2014.