On Trial Set and Uncorrectable Errors for the First-Order Reed-Muller Codes

Kenji Yasunaga Toru Fujiwara
Osaka University

Trial set

Trial set T for a binary linear code C

- is a subset of C that meets some property (describe later)
- introduced by [Helleseth, Kløve, Levenshtein, 2005]
- used for
 - Maximum Likelihood Decoding (MLD)
 - upper bounding #(uncorrectable errors) by MLD

- Smaller trial set is desirable
 - \Rightarrow How large is the size of minimum trial set T_{min} ?

Main results

For binary linear codes

 \blacksquare Give upper/lower bounds on $|T_{min}|$

For the first-order Reed-Muller codes RMm

- Determine |T_{min}|
- Determine #(minimal uncorrectable errors)

Contents

- Notations
- Background
 - Coset partitioning and Syndrome decoding
 - Monotone structure of Errors
 - Trial set, Minimal uncorrectable errors, Larger half
- Main Results
 - Upper/lower bounds on |T_{min}| for linear codes
 - $|T_{min}|$ for RM_m
 - #(minimal uncorrectable errors) in RM_m

Notations

- Support set of x; $S(x) := \{ i : x_i \neq 0 \}$
- \blacksquare x covers y; $x \subseteq y \Leftrightarrow S(x) \subseteq S(y)$
- x is lexicographically smaller than y;

$$x \prec y \Leftrightarrow ||x|| < ||y||$$
or $||x|| = ||y||$ and $v(x) < v(y)$

- Hamming weight of x; // x // := |S(x)|
- Numerical value of x; $v(x) := \sum x_i 2^{n-i}$
- Example. $000 \prec 001 \prec 010 \prec 100 \prec 011 \prec 101 \prec 110 \prec 111$

Coset partitioning and Syndrome decoding

Coset partitioning

```
■ F^n = \bigcup_{i=1}^{2^m n} C_i, C_i \cap C_j = \Phi for i \neq j,

C_i := \{v_i + c : c \in C\} : a \text{ coset}

v_i \in F^n : a \text{ coset leader}
```

Syndrome decoding

 $y \in F^n$: a received vector

- Output $y+v_i$ if $y \in C_i$
 - Coset leaders are correctable errors.
 - If v_i has minimum weight in C_i , it performs MLD.

If each coset leader is lexicographically smallest in its coset, errors have monotone structure.

Monotone structure of errors

 $E^{0}(C) :=$ the set of coset leaders (= Correctable errors)

 $E^{1}(C) := F^{n} \setminus E^{0}(C)$ (= Uncorrectable errors)

Monotone structure of errors

Suppose $x ∈ E^0(C)$, $y ∈ E^1(C)$. All u ⊆ x are correctable. All v ⊇ y are uncorrectable.

- Monotone structure of errors is well-known.
 - e.g., Theorem 3.11 of [Peterson & Weldon, 1972]
- However, only few research
 - Threshold behavior of error probability [Zémor, 1993]
 - ◆ Trial set and Larger half for error performance analysis [Helleseth, Kløve, Levenshtein, 2005]

Minimal uncorrectable errors and Larger half

Errors have monotone structure

 \Rightarrow E¹(C) is characterized by minimal vectors in E¹(C)

Minimal uncorrectable errors

■ $M^1(C) := minimal (w.r.t covering \subseteq) vectors in <math>E^1(C)$

<u>Larger half</u> of c ∈ C

- L(c) := minimal vectors
 in { v : v+c ≺ v }
 L(s) := U L(c)
- $M(C) \begin{cases} C_1 \\ C_2 \\ C_3 \\ C_4 \\ \vdots \\ C_2 \\ C_3 \\ C_4 \\ \vdots \\ C_2 \\ K_5 \\ K_6 \\ K_7 \\ E^1(C) \\ K_7 \\ \vdots \\ E^0(C) \\ K_{2^n} \end{cases} E^1(C)$
- $M^1(C) \subseteq L(M(C)) \subseteq L(C)$
 - where $M(C) := \{ \text{ minimal } (w.r.t. \subseteq) \text{ codewords in } C \}$

Trial set

■ $T \subseteq C$ is a trial set for $C \Leftrightarrow M^1(C) \subseteq L(T)$

- $C \setminus \{0\}$, M(C) are examples of trial sets for C.
- Smaller trial set is desirable for its applications.
- Minimum trial set; T_{min}

 $|T_{min}|$ is unique, though T_{min} may not be unique.

Results for linear codes

Necessary codewords for trial set

■ $T_{nec} \subseteq C := \{ c : \text{for some } v \in M^1(C), v \in L(c) \text{ and } v \notin L(c') \text{ for any } c' \in C \setminus \{c\} \}$

Results

■ Give 2 lower/ 2 upper bounds on |T_{min}|

 $D^{i}(C) := \{ v \in M^{1}(C) \setminus L(T_{nec}) : v \text{ is common LH of i minimal codewords } \}$

Upper/lower bounds on |T_{min}|

Codes	k	T _{nec}	T _{min}	C -1	M(C)	M¹(C)	(1)	(2)
(15,11)BCH	11*	11 *	11~83	2047	308	105	151	83*
(15,7)BCH	7	44 *	44~87	127	108	351	2713	87*
(15,5)BCH	5	30 *	30	321	30*	945	1260	30*
(16,11)eBCH	11	16 *	16~79	2047	588	116	780	79 *
(16,7)eBCH	7	45 *	45~86	127	126	434	8039	86*
(16,5)eBCH	5	30 *	30	31	30*	1260	1575	30*
(16,11)RM	11	15 *	15~79	2047	588	116	708	79*
(16,5)RM	5	30 *	30	31	30 *	1260	1575	30 <mark>*</mark>

(1) $|L(M(C)) \setminus L(C \setminus M(C))|$ (2) $|T_{nec}| + \sum |D^{i}(C)|$

Results for RM_m

1st-order Reed-Muller codes of length 2^m

- \blacksquare RM_m: (2^m, m+1, 2^{m-1}) code
 - Only three types of weights; 0, 2^{m-1}, 2^m

Results

- Determine |T_{min}|
- Determine $|M^1(RM_m)|$

Proof sketch for |T_{min}|

Upper bound (trivial)

 $|T_{min}| \le |M(RM_m)| = |RM_m \setminus \{0, 1\}| = 2(2^m-1)$

Lower bound

- \blacksquare T_{min} is a trial set \Rightarrow $M^1(RM_m) \subseteq L(T_{min})$
- Confine attention to weight 2^{m-2} vectors $\Rightarrow E^{1}_{2^{m-2}}(RM_{m}) \subseteq L^{-}(T_{min})$
- $\Rightarrow |E^{1}_{2^{m-2}}(RM_{m})| \leq |L^{-}(T_{min})| \leq |L^{-}(c)| \cdot |T_{min}|$
 - $|E_{2^{m-2}}^{1}(RM_m)|$ is given in [Wu, 1998]
 - $|L^{-}(c)|$ is obtained easily $\Rightarrow |T_{min}| \ge 2(2^{m}-1) \text{ for } m>4$

From above $|T_{min}| = 2(2^m-1)$ for m>4

|T_{min}| for RM_m

From the proof

For $m>4 |T_{min}| = 2(2^m-1)$

By computer search

For
$$m=4 |T_{min}| = 2(2^m-1) = 30$$

- For $m=3 |T_{min}| = 10$, $2(2^m-1) = 14$
- For $m=2 |T_{min}| = 3$, $2(2^m-1) = 6$

Proof sketch for |M1(RMm)|

- - where $RM_m^* = M(RM_m) = RM_m \setminus \{0, 1\}$
 - where $L^{+}(S) = L(S) \setminus L^{-}(S)$

- $|M^{1}(RM_{m})| = |L^{-}(RM_{m}^{*})| + |L^{+}(RM_{m}^{*})|$ $- |L^{+}(RM_{m}^{*}) \setminus M^{1}(RM_{m})|$
 - $|L^{-}(RM_{m}^{*})| = |E^{1}_{2^{m-2}}(RM_{m})|$ is given in [Wu, 1998]
 - $|L^{+}(RM_{m}^{*})|$ is easily obtained
 - We derive $|L^{+}(RM_{m}^{*}) \setminus M^{1}(RM_{m})|$ for m>3
 - By careful counting

$$|M^{1}(RM_{m})| = 2(2^{m}-1)((\frac{2^{m}}{2^{m-2}}) - 2^{m-3}(2^{m-1}-1))$$
 for m>3

Conclusions

Trial set

used for upper bounding E¹(C) and MLD

Main results

- For linear codes
 - Give upper/lower bounds on |T_{min}|
- For 1st-order RM codes
 - Determine $|T_{min}|$ and $|M^1(RM_m)|$

Future research

- Determine $|E^1_{2^{m-2}+1}(RM_m)|$
 - We give another proof for $|E^{1}_{2^{m-2}}(RM_{m})|$ given in [Wu, 1998]
 - Similar argument may be applicable
 - $|E^{1}_{2^{m-2}+1}(RM_{m})| = |M^{1}(RM_{m})| + |\{v+e : v \in E^{1}_{2^{m-2}}(RM_{m}), ||e|| = 1, v+e \supset v\}|$

Maximum likelihood decoding

Let $y \in F^n$: a received vector

- Output a nearest (in the Hamming distance) codeword to y
 - If several codewords are nearest, output an arbitrary one.
- ⇒ Syndrome decoding performs as MLD

Definition of Trial set

■ A set $T \subseteq C$ is called a trial set for C if T has the following property:

$$y \in E^0(C) \Leftrightarrow y \prec y + c \text{ for all } c \in T$$

 $(y \in E^1(C) \Leftrightarrow y + c \prec y \text{ for some } c \in T)$

- $C \setminus \{0\}$ is a trial set for C.
- Smaller trial set is desirable for its applications.
- Minimum trial set; T_{min}

Remark: $|T_{min}|$ is unique, though T_{min} may not be unique.

Proof sketch for |T_{min}|

Upper bound

 $|T_{min}| \le |M(RM_m)| = |RM_m \setminus \{0, 1\}| = 2(2^m-1)$

Lower bound

- (1) T_{min} is a trial set $\Rightarrow M^1(RM_m) \subseteq L(T_{min})$
- (2) Confine attention to weight 2^{m-2} vectors

$$\Rightarrow E^{1}_{2^{m-2}}(RM_{m}) \subseteq L^{-}(T_{min})$$
From the property of $L^{-}(\cdot) \Rightarrow E^{1}_{2^{m-2}}(RM_{m}) \supseteq L^{-}(T_{min})$

$$\Rightarrow E^{1}_{2^{m-2}}(RM_{m}) = L^{-}(T_{min})$$

- (3) $E_{2^{m-2}}^1(RM_m) = L^-(T_{min}) \Rightarrow |T_{min}| \ge 2(2^m-1)$ for m>4
 - Describe in the next slide

From above
$$|T_{min}| = 2(2^m-1)$$
 for m>4

Proof sketch for |T_{min}|

$$E_{2^{m-2}}^{1}(RM_m) = L^{-}(T_{min}) \Rightarrow |T_{min}| \ge 2(2^{m-1}) \text{ for } m>4$$

Proof sketch

- Apply $|T_{min}| \cdot |L^{-}(c)| \ge |L^{-}(T_{min})| = |E_{2^{m-2}}^{1}(RM_m)|$
 - |L-(c)| is easily obtained
 - $|E^{1}_{2^{m-2}}(RM_{m})|$ is given in [Wu, 1998]

 \Rightarrow

