On Trial Set and Uncorrectable Errors for the First-Order Reed-Muller Codes

Kenji Yasunaga Toru Fujiwara
Osaka University

2007 Hawaii and SITA Joint Conference on Information Theory (HISC2007), Hawaii, USA, May 29-31, 2007

Trial set

Trial set T for a binary linear code C

- is a subset of C that meets some property (describe later)
- introduced by [Helleseth, Kløve, Levenshtein, 2005]
- used for
- Maximum Likelihood Decoding (MLD)
- upper bounding \#(uncorrectable errors) by MLD
- Smaller trial set is desirable
\Rightarrow How large is the size of minimum trial set $T_{\text {min }}$?

Main results

For binary linear codes

- Give upper/lower bounds on $\left|T_{\text {min }}\right|$

For the first-order Reed-Muller codes RM $_{m}$

- Determine $\left|T_{\text {min }}\right|$
- Determine \#(minimal uncorrectable errors)

Contents

- Notations
- Background
- Coset partitioning and Syndrome decoding
- Monotone structure of Errors
- Trial set, Minimal uncorrectable errors, Larger half
- Main Results
- Upper/lower bounds on $\left|T_{\text {min }}\right|$ for linear codes
- $\left|T_{\text {min }}\right|$ for $R M_{m}$
- \#(minimal uncorrectable errors) in $R M_{m}$

Notations

- Support set of $x ; S(x):=\left\{i: x_{i} \neq 0\right\}$
$\square x$ covers $y ; x \subseteq y \Leftrightarrow S(x) \subseteq S(y)$
- x is lexicographically smaller than y; $x \prec y \Leftrightarrow /\|x / /<\| y \|$ or $/ / x / /=\| y / /$ and $v(x)<v(y)$
- Hamming weight of $x ;\|x\|:=|S(x)|$
- Numerical value of $x ; v(x):=\Sigma x_{i} 2^{n-i}$
- Example.

$$
000 \prec 001 \prec 010 \prec 100 \prec 011 \prec 101 \prec 110 \prec 111
$$

Coset partitioning and Syndrome decoding

Coset partitioning

- $F^{n}=\bigcup C_{i}, C_{i} \cap C_{j}=\Phi$ for $i \neq j$,

$$
\begin{aligned}
& C_{i}:=\left\{v_{i}+c: c \in C\right\}: a ~ c o s e t \\
& v_{i}
\end{aligned} \in F^{n}: \text { a coset leader }
$$

Syndrome decoding
$y \in F^{n}$: a received vector

- Output $y+v_{i}$ if $y \in C_{i}$
- Coset leaders are correctable errors.
- If v_{i} has minimum weight in C_{i}, it performs MLD.

If each coset leader is lexicographically smallest in its coset, errors have monotone structure.

Monotone structure of errors

$E^{0}(C)$:= the set of coset leaders (= Correctable errors)
$E^{1}(C):=F^{n} \backslash E^{0}(C)$ (= Uncorrectable errors)

Monotone structure of errors	Example.	
Suppose $x \in E^{0}(C), y \in E^{1}(C)$.	110	001
All $u \subseteq x$ are correctable.	\subseteq	\supseteq
All v巳y are uncorrectable.	$000,100,010$	$101,011,111$
	Correctable	Uncorrectable

- Monotone structure of errors is well-known.
- e.g., Theorem 3.11 of [Peterson \& Weldon, 1972]
- However, only few research
- Threshold behavior of error probability [Zémor, 1993]
- Trial set and Larger half for error performance analysis [Helleseth, Kløve, Levenshtein, 2005]

Minimal uncorrectable errors and Larger half

Errors have monotone structure
$\Rightarrow E^{1}(C)$ is characterized by minimal vectors in $E^{1}(C)$
Minimal uncorrectable errors

- $M^{1}(C):=$ minimal (w.r.t covering \subseteq) vectors in $E^{1}(C)$

Larger half of $c \in C$

- $L(c):=$ minimal vectors
in $\{v: v+c \prec v\}$
- $L(S):=\bigcup_{c \in S} L(c)$
- $M^{1}(C) \subseteq L(M(C)) \subseteq L(C)$

- where $M(C):=\{$ minimal (w.r.t. \subseteq) codewords in $C\}$

Trial se \dagger

- $T \subseteq C$ is a trial set for $C \Leftrightarrow M^{1}(C) \subseteq L(T)$

- $C \backslash\{0\}, M(C)$ are examples of trial sets for C.
- Smaller trial set is desirable for its applications.
- Minimum trial set; $T_{\text {min }}$
$\left|T_{\min }\right|$ is unique, though $T_{\text {min }}$ may not be unique.

Results for linear codes

Necessary codewords for trial set
$-T_{\text {nec }} \subseteq C:=\left\{c:\right.$ for some $v \in M^{1}(C), v \in L(c)$ and $v \notin L\left(c^{\prime}\right)$ for any $\left.c^{\prime} \in C \backslash\{c\}\right\}$

Results

- Give 2 lower/ 2 upper bounds on $\left|T_{\text {min }}\right|$
- For (n, k) code
$\max \left\{\begin{array}{c}k \\ \left|T_{\text {nec }}\right|\end{array}\right\} \leq\left|T_{\text {min }}\right| \leq \min \{$

$$
\begin{gathered}
|C|-1=2^{\mathrm{k}}-1 \\
|M(C)|,\left|M^{1}(C)\right| \\
|L(M(C)) \backslash L(C \backslash M(C))| \\
\left|T_{\text {nec }}\right|+\sum\left|D^{\mathrm{i}}(C)\right|
\end{gathered}
$$

$D^{i}(C):=\left\{v \in M^{1}(C) \backslash L\left(T_{\text {nec }}\right): v\right.$ is common $L H$ of i minimal codewords $\}$

Upper/lower bounds on $\left|T_{\text {min }}\right|$

Codes	k	$\left\|T_{\text {nec }}\right\|$	$\left\|T_{\text {min }}\right\|$	$\|C\|-1$	$\|M(C)\|$	$\left\|M^{1}(C)\right\|$	(1)	(2)
$(15,11) \mathrm{BCH}$	11*	11 *	11~83	2047	308	105	151	83*
$(15,7) \mathrm{BCH}$	7	44 *	44~87	127	108	351	2713	87*
$(15,5) \mathrm{BCH}$	5	30 *	30	321	30*	945	1260	30*
$(16,11) \mathrm{eBCH}$	11	16 *	16~79	2047	588	116	780	79*
$(16,7) \mathrm{eBCH}$	7	45 *	45~86	127	126	434	8039	86*
$(16,5) \mathrm{eBCH}$	5	30 *	30	31	30*	1260	1575	30*
$(16,11) \mathrm{RM}$	11	15 *	15~79	2047	588	116	708	79*
$(16,5) \mathrm{RM}$	5	30 *	30	31	30*	1260	1575	30*
(1) $\|L(M(C)) \backslash L(C \backslash M(C))\| \quad$ (2) $\left\|T_{\text {nec }}\right\|+\sum\left\|D^{i}(C)\right\|$								

Results for RM $_{m}$

1st-order Reed-Muller codes of length 2^{m}

- $R M_{m}:\left(2^{m}, m+1,2^{m-1}\right)$ code
- Only three types of weights; $0,2^{m-1}, 2^{m}$

Results

- Determine $\left|T_{\text {min }}\right|$
- Determine $\left|M^{1}\left(R M_{m}\right)\right|$

Proof sketch for $\left|T_{\text {min }}\right|$
Upper bound (trivial)

- $\left|T_{\text {min }}\right| \leq\left|M\left(R M_{m}\right)\right|=\left|R M_{m} \backslash\{0,1\}\right|=2\left(2^{m}-1\right)$

Lower bound

- $T_{\text {min }}$ is a trial set $\Rightarrow M^{1}\left(R M_{m}\right) \subseteq L\left(T_{\text {min }}\right)$
- Confine attention to weight 2^{m-2} vectors

$$
\Rightarrow E_{2^{m-2}}\left(R M_{m}\right) \subseteq L^{-}\left(T_{\text {min }}\right)
$$

$■ \Rightarrow\left|E^{1}{ }_{2^{m-2}}\left(R M_{m}\right)\right| \leq\left|L^{-}\left(T_{\text {min }}\right)\right| \leq\left|L^{-}(c)\right| \cdot\left|T_{\text {min }}\right|$

- $\left|E^{1} 2^{m-2}\left(R M_{m}\right)\right|$ is given in $[W u, 1998]$
- $\mid L^{-(c) \mid ~ i s ~ o b t a i n e d ~ e a s i l y ~}$

$$
\Rightarrow\left|T_{\text {min }}\right| \geq 2\left(2^{m}-1\right) \text { for } m>4
$$

From above $\left|T_{\text {min }}\right|=2\left(2^{m}-1\right)$ for $m>4$

$\left|T_{\text {min }}\right|$ for $R M_{m}$

From the proof

- For $m>4\left|T_{\text {min }}\right|=2\left(2^{m}-1\right)$

By computer search

- For $m=4 \quad\left|T_{\text {min }}\right|=2\left(2^{m}-1\right)=30$
- For $m=3 \quad\left|T_{\text {min }}\right|=10,2\left(2^{m}-1\right)=14$
- For $m=2\left|T_{\text {min }}\right|=3, \quad 2\left(2^{m}-1\right)=6$

Proof sketch for $\left|M^{1}\left(R M_{m}\right)\right|$

- $M^{1}\left(R M_{m}\right)=L^{-}\left(R M_{m}{ }^{*}\right) \cup\left(L^{+}\left(R M_{m}{ }^{*}\right) \cap M^{1}\left(R M_{m}\right)\right)$
- where $R M_{m}{ }^{*}=M\left(R M_{m}\right)=R M_{m} \backslash\{0,1\}$
- where $L^{+}(S)=L(S) \backslash L^{-}(S)$

- $\left|M^{1}\left(R M_{m}\right)\right|=\left|L^{-}\left(R M_{m}{ }^{*}\right)\right|+\left|L^{+}\left(R M_{m}{ }^{*}\right)\right|$

$$
-\left|L^{+}\left(R M_{m}^{*}\right) \backslash M^{1}\left(R M_{m}\right)\right|
$$

- $\left|L^{-}\left(R M_{m}{ }^{*}\right)\right|=\left|E^{1}{ }_{2 m-2}\left(R M_{m}\right)\right|$ is given in [Wu, 1998]
- $\left|L^{+}\left(R M_{m}{ }^{*}\right)\right|$ is easily obtained
- We derive $\left|L^{+}\left(R M_{m}{ }^{*}\right) \backslash M^{1}\left(R M_{m}\right)\right|$ for $m>3$
- By careful counting

$$
\left|M^{1}\left(R M_{m}\right)\right|=2\left(2^{m}-1\right)\left(\binom{2^{m}}{2^{m-2}}-2^{m-3}\left(2^{m-1}-1\right)\right) \text { for } m>3
$$

Conclusions
Trial set

- used for upper bounding $E^{1}(C)$ and MLD

Main results

- For linear codes
- Give upper/lower bounds on $\left|T_{\text {min }}\right|$
- For 1st-order RM codes
- Determine $\left|T_{\text {min }}\right|$ and $\left|M^{1}\left(R M_{m}\right)\right|$

Future research

- Determine $\left|E_{2^{m-2}+1}^{1}\left(R M_{m}\right)\right|$
- We give another proof for $\left|E_{2^{m}-2}\left(R M_{m}\right)\right|$ given in [Wu, 1998]
- Similar argument may be applicable
- $\left|E^{1}{ }^{m}{ }^{m-2}+\left(R M_{m}\right)\right|=\left|M^{1}\left(R M_{m}\right)\right|$
$+\left|\left\{v+e: v \in E^{1}{ }_{2 m-2}\left(R M_{m}\right), / / e / /=1, v+e \supset v\right\}\right|$

Maximum likelihood decoding

Let $y \in F^{n}$: a received vector

- Output a nearest (in the Hamming distance) codeword to y
- If several codewords are nearest, output an arbitrary one.
\Rightarrow Syndrome decoding performs as MLD

Definition of Trial set

- A set $T \subseteq C$ is called a trial set for C if T has the following property:

$$
\begin{aligned}
y \in E^{0}(C) & \Leftrightarrow y \prec y+c \text { for all } c \in T \\
\left(y \in E^{1}(C)\right. & \Leftrightarrow y+c \prec y \text { for some } c \in T)
\end{aligned}
$$

- $C \backslash\{0\}$ is a trial set for C.
- Smaller trial set is desirable for its applications.
- Minimum trial set; $T_{\text {min }}$

Remark: $\left|T_{\text {min }}\right|$ is unique, though $T_{\text {min }}$ may not be unique.

Proof sketch for $\left|T_{\text {min }}\right|$

Upper bound
$\square\left|T_{\text {min }}\right| \leq\left|M\left(R M_{m}\right)\right|=\left|R M_{m} \backslash\{0,1\}\right|=2\left(2^{m}-1\right)$
Lower bound
(1) $T_{\text {min }}$ is a trial set $\Rightarrow M^{1}\left(R M_{m}\right) \subseteq L\left(T_{\text {min }}\right)$
(2) Confine attention to weight 2^{m-2} vectors

$$
\Rightarrow E^{1}{ }_{2}^{m-2}\left(R M_{m}\right) \subseteq L^{-}\left(T_{\text {min }}\right)
$$

From the property of $L^{-}(\cdot) \Rightarrow E^{1}{ }_{2 m-2}\left(R M_{m}\right) \supseteq L^{-}\left(T_{\text {min }}\right)$
$\Rightarrow E_{2^{m-2}}^{1}\left(R M_{m}\right)=L^{-}\left(T_{\text {min }}\right)$
(3) $E_{2^{m-2}}\left(R M_{m}\right)=L^{-}\left(T_{\text {min }}\right) \Rightarrow\left|T_{\text {min }}\right| \geq 2\left(2^{m-1}\right)$ for $m>4$

- Describe in the next slide

From above $\left|T_{\text {min }}\right|=2\left(2^{m}-1\right)$ for $m>4$

Proof sketch for $\left|T_{\text {min }}\right|$

$$
E_{2^{m-2}}^{1}\left(R M_{m}\right)=L^{-}\left(T_{\text {min }}\right) \Rightarrow\left|T_{\text {min }}\right| \geq 2\left(2^{m}-1\right) \text { for } m>4
$$

Proof sketch

- Apply $\left|T_{\text {min }}\right| \cdot|L-(c)| \geq\left|L^{-}\left(T_{\text {min }}\right)\right|=\left|E^{1}{ }_{2^{m-2}}\left(R M_{m}\right)\right|$
- $\left|L^{-(c) \mid}\right|$ is easily obtained
- $\left|\mathrm{E}^{12 m-2}\left(R M_{m}\right)\right|$ is given in [Wu, 1998]

