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Local Weight Distribution (LWD) 

  Is the weight distribution of minimal codewords in a 
code. 
  Studies of minimal codewords are crucial for ML performance 

analysis of the code. 

  Gives a tighter upper bound than the usual union 
bound. 
  The union bound uses the (global) weight distribution. 

  Determines the complexity of gradient-like decoding. 
  Gradient-like decoding is one of the nearest codeword 

decoding. 
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Minimal Codeword 

Supp(v) := { i : vi≠ 0  for  v = (v1,v2,…,vn) } 

v  is a minimal codeword in C. 
⇔ C does not contain v1, v2 ∈ C  such that  

 v = v1+v2 , Supp(v1)∩Supp(v2) =φ.  

Ex.)   If C contains v, v1, v2, 

                v   = ( 1, 1, 1, 1 ) 
                v1 = ( 1, 1, 0, 0 ) 
                v2 = ( 0, 0, 1, 1 ) 

        ⇒ v is not a minimal codeword in C. 
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Previous Results for LWD 

 Codes completely determined: 
  Hamming codes [Ashikhmin and Barg, IEEE Trans. IT 1998] 

  2nd-order Reed-Muller codes [Ashikhmin and Barg, IEEE IT 
1998] 

 Codes obtained by computation: 
  BCH codes of length 63 [Mohri et al., IEICE Trans. Fund. 2003] 

  (128, k) extended BCH codes of k≤50 [Yasunaga and 
Fujiwara, ISITA2004] 

  (128, 64) 3rd-order Reed-Muller code [Yasunaga and 
Fujiwara, IEICE Tech. Rep. 2004] 
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Our Results 

  LWD of (256, 93) 3rd-order Reed-Muller code is 
obtained by computation. 

  By using a modified coset partitioning algorithm. 

•  Coset partitioning algorithm is useful for codes closed under 
large automorphism group (e.g. extended BCH, Reed-
Muller). 
   → (128, k) extended BCH and (128, 64) Reed-Muller. 

•  Modification is to use binary shifts and applicable to Reed-
Muller codes. 

•  Computation complexity is reduced to 1/256. 
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Coset Partitioning Algorithm  
for Computing LWD of C 

1.  Select C’ as a subcode of C. 
2.  Partition C/C’ into equivalence classes. 
3.  Compute LWSDs* for representative cosets. 
                                   ⇒ Let’s see more details … 

* LWSD (Local weight subdistribution) for a coset: 
   The weight distribution of minimal codewords in the coset. 
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Coset Partitioning Algorithm: 
1. Select C’ as a subcode of C 

 C can be seen as the set of cosets of C’ 
( denoted by C/C’ ). 

vi+C’ : coset 

vi : coset leader  

C/C’ 

v0+C’ 
v1+C’ v2+C’ 

v3+C’ 

v4+C’ 
v5+C’ 

v6+C’ 
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Coset Partitioning Algorithm: 
2. Partition C/C’ into equivalence classes 

  v1+C’ and v2+C’ are equivalent. 
⇔ There exists π such that πv1 ∈ v2+C’, π∈ Aut(C) ∩ Aut(C’). 
⇔ LWSDs for v1+C’ and v2+C’ are the same. 

  This algorithm works effectively if  Aut(C) ∩ Aut(C’)  is large. 

C/C’ 

v0+C’ 
v1+C’ v2+C’ 

v3+C’ 

v4+C’ 
v5+C’ 

v6+C’ 

equivalent 

Aut(C) is the  
automorphism  
group of C. 
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Coset Partitioning Algorithm: 
 3. Compute LWSDs for representative cosets. 

  Need to compute LWSDs only for representative cosets. 
→ LWD of C is determined. 

Computing LWSDs  
only for two cosets 
leads LWD of C. 

C/C’ 

v0+C’ 
v1+C’ v2+C’ 

v3+C’ 

v4+C’ 
v5+C’ 

v6+C’ 
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Recursive Use of Coset Partitioning 
Algorithm 

  Coset partitioning algorithm can be used for computing 
LWSDs for cosets (not only LWD of C). 

 To compute LWSD of v+C’ ∈ C/C’ 
1. Select C’’ as a subcode of C’. 
2. Partition (v+C’)/C’’ into equivalence classes*. 
3. Compute LWSDs for representative cosets. 

* {π: πv ∈ v+C’, π∈ Aut(C) ∩ Aut(C’) ∩ Aut(C’’) } is used for 
   partitioning cosets into equivalence classes. 
   Not all the permutations in Aut(C)∩Aut(C’)∩Aut(C’’). 
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In Computing LWD of (256, 93) Reed-Muller Code 

  RM(r,m) : r-th order RM code of length 2m 

  RM(3,8) = (256, 93) Reed-Muller 

  C : RM(3,8), C’ : RM(2,8), C’’ :RM(1,8) 
  RM(2,8) = (256, 37) Reed-Muller 
  RM(1,8) = (256, 9) Reed-Muller 

  Result for partitioning RM(3,8)/RM(2,8) into equivalence 
classes is known [Hou, Discr. Math, 1996]. 
  ⇒ Partitioned into 32 equivalence classes. 

⇒ Need to compute LWSDs for 32 representative cosets. 
      Computation time for each coset will be large (3000 hours with  
       2GHz Pentium4). → Recursive use of the algorithm. 
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In Computing LWSD for  
v+RM(2,8) ∈ RM(3,8)/RM(2,8) 

  We recursively use coset partitioning algorithm. 

  To partition (v+RM(2,8))/RM(1,8) into equivalence 
classes, we need a set of permutations 
{π: πv ∈ v+RM(2,8), π∈ GA(8) }. 
  GA(m) is the general affine group, and the automorphism group 

of RM(r,m). 

  We find a candidate for such permutations, 
⇒ binary shifts. 
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Reed-Muller Code; RM(r,m) 

  Any binary vector of length 2m has one-to-one correspondence with 
Boolean polynomial of m variables (x1, x2, …., xm). 

  r-th order Reed-Muller code of length 2m :  
RM(r,m) = { m-variable Boolean polynomials with degree at most r} 

m-variable  
Boolean polynomial 
     f (x1, x2, …, xm) 

Binary vector of length 2m 

v = (v1, v2, …, v2m) 
v consists of all 2m arguments’ truth  
evaluation of f () ( the truth table of f () ). 

Ex.)  f ∈RM(2,2)  
   f  = x1 + x2   ⇔   v = (0+0, 1+0, 0+1, 1+1)  = (0, 1, 1, 0) 
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General Affine Group; GA(m) 
  GA(m) : The set of transformation T for m-variable polynomials  

f (x1, …,xm). 

  Since T does not increase the degree of polynomials, GA(m) is the 
automorphism group of RM(r,m).  

  When A is the identity matrix, GA(m) is called binary shifts, 
denoted by BS(m).  
  π∈BS(m) replaces each xi  by xi+bi , bi={0, 1}. 

T : replace             by 

A is an invertible m×m matrix, b is a binary m-tuple. 

⇒ Return to our subject … 



15 

In Computing LWSD for  
v+RM(2,8) ∈ RM(3,8)/RM(2,8) 

  We need a set of permutations {π: πv ∈ v+RM(2,8), π∈ GA(8) } in 
order to partition (v+RM(2,8))/RM(1,8) into equivalence classes. 

  BS(m) is a candidate for such permutations. 
  For any coset leader v, the degree of v is 3.  
  For π∈BS(8), the degree 3 Boolean polynomials contained in πv 

is only v. 
⇒ πv ∈ v+RM(2,8). 

Ex.)   v = x1x2x3. 
       πv = (x1+b1)(x2+b2)(x3+b3) 
              = x1x2x3 + (Boolean polynomial with degree at most 2). 
           ∈ v+RM(2,8) 

π∈BS(m) replaces  xi  by  xi+bi,  bi={0,1}. 



  Let CBS(v) = { πv : π∈BS(m) }. 

Theorem 4: Linearity of CBS(v).  
Let  f  be an r-th order Boolean polynomial. 
For a coset  f +RM(r-1,m), CBS( f ) is a linear subspace of  f +RM(r-1,m). 

Lemma 4: Bases of CBS(v). 
Let πi∈BS(m) be the permutation that only replaces xi by xi+1. 
For a coset  f +RM(r-1,m), πi  f  for 1 ≤ i ≤ m are bases of CBS( f ). 

Lemma 5: Equivalence of LWSDs for v + v1+CBS(v)+RM(r-2,m). 
For  v+RM(r-1,m)∈RM(r,m)/RM(r-1,m),  
let  v+v1+RM(r-2,m) ∈ (v+RM(r-1,m)/RM(r-2,m)). 
LWSD of v + v1+RM(r-2,m) and LWSD of v + v1+ u +RM(r-2,m) for 
any u∈CBS(v) are the same. 

In Computing LWSD for  
v+RM(2,8) ∈ RM(3,8)/RM(2,8) 
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In Computing LWSD for  
v+RM(2,8) ∈ RM(3,8)/RM(2,8) 

  From the last lemma, each coset in (v+RM(2,8))/RM(1,8) 
has |CBS(v)| equivalent cosets. 

⇒ Computation complexity for computing LWSD for 
     v+RM(2,8) will be reduced to 1/|CBS(v)|. 

  |CBS(v)| = 2dim(CBS(v)). 
  Clearly, dim(CBS(v)) ≤ 8 for v+RM(2,8)∈RM(3,8)/RM(2,8).  
  dim(CBS(v)) is obtained by investigating the number of  

independent vectors in bases of CBS(v). 
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  For 32 representative cosets vi+RM(2,8)∈RM(3,8)/RM(2,8), 1 ≤ i ≤ 
32, 

  For most cosets, dim(CBS(vi)) is 7 or 8, and thus the complexity is 
reduced to 1/128 or 1/256. 

  For i = 1, 2, 3, binary shift method is not effective. 
       ⇒ We take another method.  

          Investigate the minimality of codewords in the cosets from the coset 
                leaders. 

dim(CBS(v)) for 32 representative cosets v
+RM(2,8)∈RM(3,8)/RM(2,8) 

dim(CBS(vi)) =  

0   for  i = 1, 
3   for  i = 2, 
5   for  i = 3, 
6   for  i = 4, 5, 6, 
7   for  i = 7, 8, …, 12, 
8   for  i = 13, 14, …, 32. 
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Minimal codewords in vi+RM(2,8) for i = 1, 2, 3 

  i = 1,  v1 = 0 
  Any codeword in v1+RM(2,8) is not minimal in RM(3,8). 

  i = 2,  v2 = x1x2x3 
  All minimal codewords are of the form (x1+a1)(x2+a2)(x3+a3),  

ai = {0, 1}. 
⇒ These codewords have the minimum weight.  
    Then there is 8 minimal codewords in v2+RM(2,8). 

  i = 3,  v3 = x1x2x3+x2x4x5 
  All minimal codewords are of the form x2((x1x3+x4x5)+g) or (x2+1)

(x1x3+x4x5)+g) where g is a 1st order Boolean polynomial. 
⇒ Checking minimality for all 2m+1 patterns leads LWSD of 
     v3+RM(2,8). 
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Determination of LWDs for 32 representative 
cosets in RM(3,8)/RM(2,8) 

  For vi+RM(2,8) of i = 1, 2, 3, we determined LWDs by 
investigating minimality of codewords from the coset 
leaders. 
  Note: [Borissov and Manev, Serdica, 2004] derived the 
same results as this. 

  For the other cosets, we compute LWDs by using binary 
shift method. 
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LWD of (256,93) Reed-Muller Code 

weight #(minimal codewords) 

32 777 240 

48 2 698 577 280 

56 304 296 714 240 

64 74 957 481 580 800 

68 707 415 842 488 320 

72 28 055 013 884 190 720 

76 764 244 915 168 215 040 

80 20 661 780 862 988 697 600 

84 414 411 510 493 363 568 640 

88 6 266 129 424 660 312 883 200 

92 71 773 299 826 457 585 909 760 

96 627 671 368 441 418 233 282 560 

100 4 208 996 769 021 096 823 357 440 

weight #(minimal codewords) 

104 21 729 928 024 588 603 285 831 680 

108 86 666 048 822 136 825 068 912 640 

112 267 785 773 787 841 625 294 110 720 

116 642 456 218 534 940 726 012 149 760 

120 1 198 819 482 820 829 207 341 301 760 

124 1 741 767 435 501 050 021 239 848 960 

128 1 971 038 877 022 035 145 182 412 800 

132 1 735 627 864 909 747 949 509 017 600 

136 1 184 951 930 170 762 649 130 762 240 

140 620 824 077 435 771 999 611 781 120 

144 242 710 219 348 184 804 622 336 000 

148 65 293 324 137 047 881 521 561 600 

152 8 982 921 659 842 430 396 006 400 
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Conclusions 

 We obtained LWD of the (256,93) 3rd-order 
Reed-Muller code. 
  Using a modified coset partitioning algorithm. 

•  We recursively use coset partitioning algorithm for computing 
LWSD for representative cosets. 

•  Modification is to use BS(m) (binary shifts) in GA(m), and 
applicable to Reed-Muller codes. 

•  Computation complexity of LWSD is reduced to 1/256 for 
most representative cosets in RM(3,8)/RM(2,8). 


