The Local Weight Distributions of Transitive Invariant Codes and Their Punctured Codes

Kenji YASUNAGA and Toru FUJIWARA Osaka University, Osaka, Japan

HISC2005, Hawaii, USA

Outline

- Local Weight Distribution (LWD)
- Definition, known results, motivation
- Relation between LWDs of a transitive invariant code (including ext. BCH, Reed-Muller) and its punctured code 1. Relation for the extended code and the original code (general case)

2. Useful relation for the case an extended code is a transitive invariant code

- Results
- Conclusion

Local Weight Distribution (LWD)

The LWD is the weight distribution of the neighbor codewords to the zero codeword (called zero neighbors).
Codewords of C on $\boldsymbol{R}^{\mathrm{n}}$

The LWD of C

weight	the number of zero neighbors
3	1
4	3
5	1

What for We Obtain LWD?

- LWD is valuable for the error performance analysis of codes.
- Union bound is a well-known upper bound of the error probability for soft decision decoding on AWGN channel.
- We often use the weight distribution to compute the union bound.
- Using LWD instead of the weight distribution, we could obtain a tighter upper bound than the usual union bound.

Known Results for LWD

- Hamming codes and second-order Reed-Muller codes
- The formulas for the LWDs are known [Ashikhmin, Barg 98].
- Primitive BCH codes
- $(63, k)$ codes for all k [Mohri, Honda, Morii 03]
- Extended primitive BCH codes
- $(128, k)$ codes for $k \leqq 50$ [Yasunaga, Fujiwara 03]
- Reed-Muller codes
- Third-order RM code of length 128 [Yasunaga, Fujiwara 04]

Goal

- Obtain LWDs of $(127,43)$, $(127,50)$ BCH codes

Motivation:

- LWDs of $(128,43)$ and $(128,50)$ extended BCH codes are obtained.
- LWDs of $(127,43)$ or $(127,50)$ BCH codes are not obtained.

Investigate a relation between LWDs of a code C and its extended code C_{ex}

Condition for zero neighbor

- Support set: $\operatorname{Supp}(\boldsymbol{v})=\left\{i: v_{i} \neq 0\right.$ for $\left.\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{\mathrm{n}}\right)\right\}$
v is a zero neighbor in C
$\Leftrightarrow \mathrm{C}$ does not contain $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ such that

$$
\boldsymbol{v}=\boldsymbol{v}_{1}+\boldsymbol{v}_{2}, \operatorname{Supp}\left(\boldsymbol{v}_{1}\right) \cap \operatorname{Supp}\left(\boldsymbol{v}_{2}\right)=\phi .
$$

$$
\begin{aligned}
& \boldsymbol{v}_{2} 00001000100
\end{aligned}
$$

If C contains such v_{1} and v_{2}, v is called decomposable. (v is decomposable $\Leftrightarrow v$ is not a zero neighbor)

Questions

v : a codeword in C
$\boldsymbol{v}^{(\mathrm{ex})}$: the extended codeword of \boldsymbol{v}
(1) If v is a zero neighbor in C , is $\boldsymbol{v}^{(\mathrm{ex})}$ a zero neighbor in C_{ex} ?
(2) If v is not a zero neighbor in C , is $\boldsymbol{v}^{(\mathrm{ex})}$ not a zero neighbor in C_{ex} ?

Simple Observation

(1) If v is a zero neighbor in C ,
$\Rightarrow \boldsymbol{v}^{(\mathrm{ex})}$ is a zero neighbor in C_{ex}.
(2) If v is not a zero neighbor in C,
\Rightarrow (a) In the case weight (\boldsymbol{v}) is odd, $\boldsymbol{\nu}^{(\mathrm{ex})}$ is not a zero neighbor in C_{ex}.
(b) In the case weight (\boldsymbol{v}) is even, both cases can occur.

(2) v is not a zero neighbor in C (b) weight (v) is even

\[

\]

\boldsymbol{v} is decomposable into $\boldsymbol{v}_{1}+\boldsymbol{v}_{2}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in \mathrm{C}$

(2) v is not a zero neighbor in C (b) weight (v) is even

(i) Both $\boldsymbol{v}_{1}, v_{2}$ are even weight

$$
\begin{aligned}
& \boldsymbol{v}^{(\mathrm{ex})} 11101010111100 \\
& \text { II }
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{v}_{2}{ }^{(\mathrm{ex})} 000010011000 \\
& \text { parity bit }
\end{aligned}
$$

$v^{(\text {ex })}$ is decomposable (not a zero neighbor)
(ii) Both v_{1}, v_{2} are odd weight
parity bit
$\boldsymbol{\nu}^{(\mathrm{ex})}$ is not decomposable into $\boldsymbol{v}_{1}^{(\mathrm{ex})+\boldsymbol{v}_{2}}{ }^{(\mathrm{ex})}$

If (ii) occurs for all \boldsymbol{v} 's decompositions, v is called only-odd decomposable, and $\boldsymbol{v}^{(\mathrm{ex})}$ is a zero neighbor in C_{ex}.

$$
\begin{aligned}
& \text { II } \\
& \boldsymbol{v}_{1}{ }^{(\mathrm{ex})} \begin{array}{c}
01101010101011 \\
+
\end{array}
\end{aligned}
$$

Relation of zero neighborship in C and $C_{e x}$

- If C contains no only-odd decomposable codeword,

v is a zero neighbor in C
$\Leftrightarrow \boldsymbol{\nu}^{(\mathrm{ex})}$ is a zero neighbor in $\mathrm{C}_{\text {ex }}$

What is a condition of C to contain no only-odd decomposable codeword?

Theorem 3:

If all the weights of codewords in C_{ex} are multiples of four, C contains no only-odd decomposable codeword.
-Examples of above C_{ex} :

- $(128, k)$ extended primitive BCH codes with $k \leqq 57$
- Third-order Reed-Muller codes of length 128, 256, 512

Relation between LWDs of C and C_{ex}

- If C contains no only-odd decomposable codeword,
\Rightarrow we can obtain LWD of C_{ex} from LWD of C

but

We'd like to obtain LWD of C from LWD of C_{ex}.

- To do this, we need to know the number of zero neighbors with parity bit one.

For a transitive invariant code C_{ex}

Lemma 3:

For a transitive invariant code C_{ex} of length $n+1$, $\#\binom{$ zero neighbors of parity }{ bit one in C_{ex} with weight $w}=\frac{w L_{w}\left(C_{\mathrm{ex}}\right)}{n+1}$
$L_{w}\left(\mathrm{C}_{\mathrm{ex}}\right):=$ \#(zero neighbors in C_{ex} with weight w)
Transitive invariant codes: extended primitive BCH codes, Reed-Muller codes

Theorem 8.15,
W. W. Peterson and E. J. Weldon, Jr., Error correcting codes, 2nd Edition, 1972

Results

- We obtained LWDs of $(127,43)$ and $(127,50)$ primitive BCH codes.
- From

LWDs of $(128,43)$ and $(128,50)$ extended primitive BCH codes

LWD of $(127,50)$ primitive BCH code

weight	the number of zero neighbors
27	40894
28	146050
31	4853051
32	14559153
35	310454802
36	793384494
39	10538703840
40	23185148448
43	199123183160
44	380144258760
47	2154195406104
48	3590325676840
51	13633106229288

weight	the number of zero neighbors
52	19925309104344
55	51285782220204
56	65938862854548
59	115927157830260
60	131384112207628
63	158486906385472
64	158486906385472
67	131258388369668
68	115816225032060
71	64917266933304
72	50491207614792
75	15345182164032
76	10499335164864

For a code C containing onlyodd decomposable codewords

Corollary 1:
An only-odd decomposable codeword has only one decomposition.

- The number of only-odd decomposable codewords in C
- Using a known efficient algorithm for LWD of C \Rightarrow Computable
- Using a known efficient algorithm for LWD of C_{ex} \Rightarrow Open problem

Conclusion

- LWD is valuable for an error performance analysis.
- Relation between LWDs of a transitive invariant code and its punctured code
- Relation between C and C_{ex}
- We give a useful relation in the case
- C_{ex} is a transitive invariant code
- C contains no only-odd decomposable codeword
- We obtained LWDs of $(127,43)$ and $(127,50)$ primitive BCH codes.

Relation between LWDs of C and Cex

Theorem 4:
If C_{ex} is a transitive invariant code length $n+1$,

$$
\begin{array}{ll}
L_{w}(C)=\frac{w+1}{n+1} L_{w+1}\left(C_{\mathrm{ex}}\right), & \text { for odd } w, \\
L_{w}(C)=\frac{n+1-w}{n+1} L_{w}\left(C_{\mathrm{ex}}\right)-N_{w}, & \text { for even } w .
\end{array}
$$

$N_{w}:=$ \#(only-odd decomposable codewords with weight w)
If we know N_{w}
We can obtain LWD of C from LWD of $\mathrm{C}_{\mathrm{ex}} \cdot 20$

Corollary 2:

For a code C of length n,

$$
L_{2 i}\left(C_{\mathrm{ex}}\right)=L_{2 i-1}(C)+L_{2 i}(C)+N_{2 i}, 0 \leq i \leq n / 2 .
$$

$L_{w}(\mathrm{C}):=$ \#(zero neighbors in C with weight w) $N_{w}:=$ \#(only-odd decomposable codewords with weight w)

If we know N_{w},
we could obtain LWD of C_{ex} from LWD of C .

