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Cryptography and Game Theory 

n  Cryptography:  
Design protocols in the presence of adversaries 

n  Game theory: 
Study the behavior of rational players 



Cryptography and Game Theory 

n  Cryptography:  
Design protocols in the presence of adversaries 

n  Game theory: 
Study the behavior of rational players 

n  Rational cryptography: 
Design cryptographic protocols for rational players 

l  Rational Secret Sharing [HT04, GK06, ADG+06, 
KN08a, KN08b, MS09, OPRV09, FKN10, AL11] 



Asharov, Canetti, Hazay (Eurocrypt 2011) 

n  Game-theoretically characterize  
properties of two-party protocols 

l  Protocol π satisfies a “certain” property 
ó A “certain” game defined by π 
    has a “certain” solution concept 
    with “certain” utility functions 
l  Properties: Correctness, Privacy, Fairness 

l  Adversary model: Fail-stop adversaries 

l  Equivalent defs. for correctness and privacy 

l  New def. for fairness 



This work 

n  Game-theoretically characterize properties of 
“two-message” Oblivious Transfer (OT) 

n  Advantages compared to [ACH11] 

1.  Game between two rational players 
l  Essentially played by a single player in [ACH11] 

2.  Characterize correctness and privacy  
by a single game 

3.  Malicious adversaries 



Oblivious Transfer 

n  A protocol between sender S and receiver R 

n  Correctness: After running the protocol, 
R obtains xc and S obtains nothing (or ⊥) 

n  Privacy 
l  Privacy for S: R learns nothing about x1-c 

l  Privacy for R: S learns nothing about c 

x0, x1 c ∈ {0,1} 

xc ⊥ S R OT 
･･･ 

･･･ 



Why “two-message” OT ? 

Two-message OT 

 

x0, x1 c ∈ {0,1} 

xc ⊥ S R 
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Why “two-message” OT ? 

Two-message OT 

n  IND based privacy fits for GT framework 

l  Utility is high ó Prediction is correct 

n  Exit IND based privacy for two-message OT 

x0, x1 c ∈ {0,1} 

xc ⊥ S R 

Msg1 

Msg2 



Our results 

n  Protocol π for two-message OT  
satisfies “correctness” and “privacy” 
 
ó A “certain” game defined by π 
    has a “certain” solution concept 
    with “certain” utility functions 
 
 



Our results 

n  Protocol π for two-message OT  
satisfies “correctness” and “privacy” 
 
ó A “certain” game defined by π 
    has a “certain” solution concept 
    with “certain” utility functions 
 
ó A game Gameπ defined by π 
    has a Nash equilibrium 
    with utility functions U = (US, UR) 



Cryptographic Correctness of OT 

n  Protocol π = (S, R) 

Correctness 

n ∀ x0, x1 ∈ {0,1}* s.t. |x0| = |x1|, c ∈ {0,1}, 
  Pr[ outputR(S(x0, x1), R(c)) = xc ] ≥ 1 − negl 



Cryptographic Privacy of two-message OT 
Privacy for R 

n  ∀ PPT S* and x0, x1 ∈ {0,1}*, 
     {viewS*(S*(x0, x1), R(0))} =c {viewS*(S*(x0, x1), R(1))} 

Privacy for S 

n  ∃ a function Choice: {0,1}* à {0,1} s.t. 
∀ determ. poly-time R*, x0, x1, x, z ∈ {0,1}*, c ∈ {0,1},  
      {viewR*(S(X0), R*(c, z))} =c {viewR*(S(X1), R*(c, z))} 
where X0 = (x0, x1), and  
X1 = (x0, x) if Choice(R*, c, z) = 0, X1 = (x, x1) otherwise 

l  Choice indicates the choice bit of R* 



Gameπ 

n  Protocol: π = (Sπ, Rπ),  
Input:      x0, x1, x, z ∈ {0,1}*, c ∈ {0,1}  
Players:   Sender (S, GS), Receiver (R, GR) 

n  Gameπ((S, GS), (R, GR), Choice, x0, x1, x, c, zS, zR): 

1.  X0 = (x0, x1),  
X1 = (x0, x) if Choice(R, c, z) = 0, X1 = (x, x1) o.w. 

2.  b ßR {0, 1} and set z to be empty if R = Rπ 

3.  Execute (S(Xb), R(c, z)) (à outputR) 
Set fin = 1 ó Protocol finished without abort 

4.  GS guesses c from viewS (à  guessS)  
GR guesses b from viewR (à guessR) 

5.  Output (fin, outputR, guessS, guessR) 



Utility functions U = (US, UR) 
n  US((S, GS), (R, GR)) 

= (− αS)・( Pr[ guessR = b ] − 1/2 )  
   +  βS・( Pr[ fin=0 ∨ (fin=1 ∧ outputR = xc)] − 1) 
   +  γS・( Pr[ guessS = c ] − 1/2 ) 

l  αS, βS, γS are some positive constants 

l  US is low if GR’s guess is correct  
or finish w/o abort and output is incorrect 
or GS’s guess is incorrect 

n  UR((S, GS), (R, GR)) 
= (− αR)・( Pr[ guessS = c ] − 1/2 )  
   +  βR・( Pr[ fin=0 ∨ (fin=1 ∧ outputR = xc)] − 1) 
   +  γR・( Pr[ guessR = b ] − 1/2 ) 



Nash equilibrium 

n  Protocol (S, R) is a Nash equilibrium for Gameπ 

   ó  

   ∃ Choice s.t. ∀ PPT GS, GR, S*, (determ.) R*,  
   ∀ x0, x1, x, z ∈ {0,1}*, c ∈ {0,1}, 

      US((S*,GS), (R,GR)) ≤ US((S,GS), (R,GR)) + negl 

   and 

      UR((S,GS), (R*,GR)) ≤ UR((S,GS), (R,GR)) + negl 



Game-theoretic characterization 

n  Main Theorem: 
 
Protocol π = (Sπ, Rπ) for two-message OT  
satisfies cryptographic correctness and privacy 
 
if and only if 
 
π = (Sπ, Rπ) is a Nash equilibrium for Gameπ  
with utility functions U = (US, UR) 



Proof (“Crypto à Game”) 

Assume π is not game-theoretically secure 

ó π = (Sπ, Rπ) is not NE for Gameπ 

ó ∀Choice, ∃GS*, GR*, S*, R*, x0, x1, x, z, c s.t. 

l  Case 1:  
US((S*,GS), (Rπ,GR)) > US((Sπ,GS), (Rπ,GR)) + εS 

    or 

l  Case 2: 
 UR((Sπ,GS), (R*,GR)) > UR((Sπ,GS), (Rπ,GR)) + εR 



Proof (“Crypto à Game”) 

n  Case 1:  
US((S*,GS), (Rπ,GR)) > US((Sπ,GS), (Rπ,GR)) + εS 

l  Recall that 
US((Sπ, GS), (Rπ, GR)) 
= (− αS)・( Pr[ guessR = b ] − 1/2 )  
   +  βS・( Pr[ fin=0 ∨ (fin=1 ∧ outputR = xc)] − 1) 
   +  γS・( Pr[ guessS = c ] − 1/2 ) 

n  When Sπ à S* 
Case 1-a: Pr[ guessR = b ] is lower 
Case 1-b: Pr[ fin=0 ∨ (fin=1 ∧ outputR = xc)] is higher 
Case 1-c: Pr[ guessS = c ] is higher 



Proof (“Crypto à Game”) 

n  Case 1-a: Pr[ guessR = b ] is lower 

è Since Pr[ guessR = b ] ≤ 1/2 + negl when S*, 
    (Rπ, GR) breaks the privacy for S 

n  Case 1-b: Pr[fin=0 ∨ (fin=1 ∧ outputR=xc)] is higher 

è Pr[fin=0 ∨ (fin=1 ∧ outputR=xc)] < 1 − ε when Sπ 

è Not cryptographically correct 

n  Case 1-c: Pr[ guessS = c ] is higher 

è Pr[ guessS = c ] ≠ 1/2 ± negl when S* 
è (S*, GS) breaks the privacy for R 



Proof (“Game à Crypto”) 

  Assume π is not cryptographically secure 

 ó 

l  Case 1: Not cryptographically correct 

l  Case 2: Cryptographically correct 
l  Case 2-a: Not private for S when Rπ  

l  Case 2-b: Private for S when Rπ, not private for R 

l  Case 2-c: Private for R, not private for S when R* 



Proof (“Game à Crypto”) 

n  Case 1: Not cryptographically correct 

è ∃ x0, x1, c s.t. Pr[ outputR = xc] < 1 − ε1  

è US((Sπ, GS), (Rπ, GR)) < − βS・ε1 
     US((Sdef, GS), (Rπ, GR)) = 0 

è US is higher when Sπ à Sdef 

l  Sdef: Abort before start 

l  Pr[fin=0 ∨ (fin=1 ∧ outputR=xc)] is higher 
when Sπ à Sdef 



Proof (“Game à Crypto”) 

n  Case 2: Cryptographically correct 

l  Case 2-a: Not private for S when Rπ  

è ∃ D1 who distinguishes viewRπ  

è US((Sπ, GS), (Rπ, GR)) < − αS・ε2 
     US((Sstop, GS), (Rπ, GR)) = 0  (when GR uses D1)  

è US is higher when Sπ à Sstop 
l  Sstop: Abort after receiving a message 

l  Pr[ guessR = b ] is higher when Sπ à Sstop 



Proof (“Game à Crypto”) 

n  Case 2: Cryptographically correct 

l  Case 2-b: Private for S when Rπ, not for R 

è ∃ S* and D2 who distinguishes viewS* 

è ∃ D2 who distinguishes viewSπ 
     (since two-message OT) 

è UR((Sπ,GS), (Rπ,GR)) < − αR・ε3 
     UR((Sπ,GS), (Rdef,GR)) = 0 (when GS uses D2) 

l  Rdef: Abort before start 

l  Pr[ guessS = c ] is higher when Rπ à Rdef 



Proof (“Game à Crypto”) 

n  Case 2: Cryptographically correct 

l  Case 2-c: Private for R, not for S when R* 

è ∃ R* and D3 who distinguishes viewR* 

è UR((Sπ,GS), (Rπ,GR)) < negl  
     UR((Sπ,GS), (R*,GR)) = γR・ε4 (when GR uses D3) 

è UR is higher when Rπ à R* 
l  Pr[ guessR = b ] is higher when Rπ à R* 



Notes 

n  Main theorem holds even if γS = 0 or βR = 0 

n  US((S, GS), (R, GR)) 
= (− αS)・( Pr[ guessR = b ] − 1/2 )  
   +  βS・( Pr[ fin=0 ∨ (fin=1 ∧ outputR = xc)] − 1) 
   +  γS・( Pr[ guessS = c ] − 1/2 ) 

n  UR((S, GS), (R, GR)) 

= (− αR)・( Pr[ guessS = c ] − 1/2 )  

   +  βR・( Pr[ fin=0 ∨ (fin=1 ∧ outputR = xc)] − 1) 

   +  γR・( Pr[ guessR = b ] − 1/2 ) 



Conclusions (1/2) 

n  Game-theoretically characterize “two-message” OT 

    Protocol π = (Sπ, Rπ) for two-message OT  
    satisfies cryptographic correctness and privacy 

    ó π = (Sπ, Rπ) is a Nash equilibrium for Gameπ  
         with utility functions U = (US, UR) 

n  Advantages compared to [ACH ‘11] 

1.  Game between two rational players 

2.  Characterize correctness and privacy  
by a single game 

3.  Malicious adversaries 



Conclusions (2/2) 

n  The first step toward understanding  
how OT protocols work for rational players 

n  Future work 

l  Characterize OT with the ideal/real 
simulation-based security 

l  Characterize other protocols 

l  Explore good examples of rational 
cryptography 


