A Game-Theoretic Perspective on Oblivious Transfer

Kenji Yasunaga (ISIT)

Joint work with Haruna Higo, Akihiro Yamada, Keisuke Tanaka (Tokyo Inst. of Tech.)

2012.5.8 Crypto Seminar @ Kyusyu University

Cryptography and Game Theory

- Cryptography: Design protocols in the presence of adversaries
- Game theory: Study the behavior of rational players

Cryptography and Game Theory

- Cryptography: Design protocols in the presence of adversaries
- Game theory: Study the behavior of rational players

- Rational cryptography: Design cryptographic protocols for rational players
 - Rational Secret Sharing [HT04, GK06, ADG⁺06, KN08a, KN08b, MS09, OPRV09, FKN10, AL11]

Asharov, Canetti, Hazay (Eurocrypt 2011)

- Game-theoretically characterize properties of two-party protocols
 - Protocol π satisfies a "certain" property
 A "certain" game defined by π has a "certain" solution concept with "certain" utility functions
 - Properties: Correctness, Privacy, Fairness
 - Adversary model: Fail-stop adversaries
 - Equivalent defs. for correctness and privacy
 - New def. for fairness

This work

- Game-theoretically characterize properties of "two-message" Oblivious Transfer (OT)
- Advantages compared to [ACH11]
 - 1. Game between two rational players
 - Essentially played by a single player in [ACH11]
 - 2. Characterize correctness and privacy by a single game
 - 3. Malicious adversaries

Oblivious Transfer

A protocol between sender S and receiver R

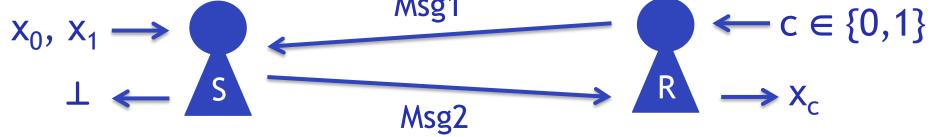
$$x_{0}, x_{1} \rightarrow \mathbf{x}_{c} \longleftrightarrow \qquad \mathbf{OT} \qquad \longleftrightarrow \qquad \mathbf{R} \leftarrow \mathbf{c} \in \{0, 1\}$$

$$\downarrow \leftarrow \mathbf{x}_{c} \longleftrightarrow \qquad \mathbf{C} \leftarrow \mathbf{c} \in \{0, 1\}$$

- Correctness: After running the protocol, R obtains x_c and S obtains nothing (or \bot)
- Privacy
 - Privacy for S: R learns nothing about x_{1-c}
 - Privacy for R: S learns nothing about c

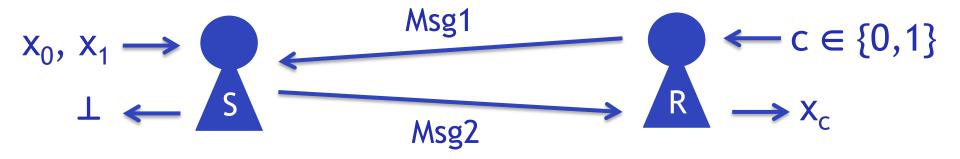
Why "two-message" OT ?

Two-message OT Msg1



Why "two-message" OT ?

Two-message OT



IND based privacy fits for GT framework Utility is high <> Prediction is correct Exit IND based privacy for two-message OT

Our results

Protocol π for two-message OT satisfies "correctness" and "privacy"

A "certain" game defined by π has a "certain" solution concept with "certain" utility functions

Our results

Protocol π for two-message OT satisfies "correctness" and "privacy"

A "certain" game defined by π has a "certain" solution concept with "certain" utility functions

A game Game^π defined by π has a Nash equilibrium with utility functions U = (U_S, U_R)

Cryptographic Correctness of OT

Protocol
$$\pi = (S, R)$$

Correctness

■
$$\forall x_0, x_1 \in \{0,1\}^*$$
 s.t. $|x_0| = |x_1|, c \in \{0,1\},$
Pr[output_R(S(x₀, x₁), R(c)) = x_c] ≥ 1 - negl

Cryptographic Privacy of two-message OT

Privacy for R

■ \forall PPT S* and $x_0, x_1 \in \{0,1\}^*$, {view_{S*}(S*(x_0, x_1), R(0))} =_c {view_{S*}(S*(x_0, x_1), R(1))}

Privacy for S

- ∃ a function Choice: $\{0,1\}^* \rightarrow \{0,1\}$ s.t. ∀ determ. poly-time R*, x_0 , x_1 , $x, z \in \{0,1\}^*$, $c \in \{0,1\}$, $\{view_{R^*}(S(X^0), R^*(c, z))\} =_c \{view_{R^*}(S(X^1), R^*(c, z))\}$ where $X^0 = (x_0, x_1)$, and $X^1 = (x_0, x)$ if Choice(R*, c, z) = 0, $X^1 = (x, x_1)$ otherwise
 - Choice indicates the choice bit of R*

Game^π

- Protocol: $\pi = (S^{\pi}, R^{\pi}),$ Input: $x_0, x_1, x, z \in \{0,1\}^*, c \in \{0,1\}$ Players: Sender (S, G_S), Receiver (R, G_R)
- Game^{π}((S, G_S), (R, G_R), Choice, x₀, x₁, x, c, z_S, z_R):
 - 1. $X^0 = (x_0, x_1),$ $X^1 = (x_0, x)$ if Choice(R, c, z) = 0, $X^1 = (x, x_1)$ o.w.
 - 2. $b \leftarrow_R \{0, 1\}$ and set z to be empty if $R = R^{\pi}$
 - 3. Execute $(S(X^b), R(c, z)) (\rightarrow output_R)$ Set fin = 1 \Leftrightarrow Protocol finished without abort
 - 4. G_S guesses c from view_S (\rightarrow guess_S) G_R guesses b from view_R (\rightarrow guess_R)
 - 5. Output (fin, output_R, guess_S, guess_R)

Utility functions $U = (U_S, U_R)$

■
$$U_{s}((S, G_{s}), (R, G_{R}))$$

= $(-\alpha_{s}) \cdot (Pr[guess_{R} = b] - 1/2)$
+ $\beta_{s} \cdot (Pr[fin=0 \lor (fin=1 \land output_{R} = x_{c})] - 1)$
+ $\gamma_{s} \cdot (Pr[guess_{s} = c] - 1/2)$

- α_s , β_s , γ_s are some positive constants
- U_s is low if G_R's guess is correct or finish w/o abort and output is incorrect or G_s's guess is incorrect

$$U_{R}((S, G_{S}), (R, G_{R}))$$

$$= (-\alpha_{R}) \cdot (Pr[guess_{S} = c] - 1/2)$$

$$+ \beta_{R} \cdot (Pr[fin=0 \lor (fin=1 \land output_{R} = x_{c})] - 1)$$

$$+ \gamma_{R} \cdot (Pr[guess_{R} = b] - 1/2)$$

Nash equilibrium

- Protocol (S, R) is a Nash equilibrium for Game[¬]
 - ∃ Choice s.t. \forall PPT G_S, G_R, S*, (determ.) R*, \forall x₀, x₁, x, z ∈ {0,1}*, c ∈ {0,1},
 - $U_{S}((S^{*},G_{S}), (R,G_{R})) \leq U_{S}((S,G_{S}), (R,G_{R})) + negl$

and

 $\mathsf{U}_{\mathsf{R}}((\mathsf{S},\mathsf{G}_{\mathsf{S}}),\ (\mathsf{R}^{*},\mathsf{G}_{\mathsf{R}})) \leq \mathsf{U}_{\mathsf{R}}((\mathsf{S},\mathsf{G}_{\mathsf{S}}),\ (\mathsf{R},\mathsf{G}_{\mathsf{R}})) + \mathsf{negl}$

Game-theoretic characterization

Main Theorem:

Protocol $\pi = (S^{\pi}, R^{\pi})$ for two-message OT satisfies cryptographic correctness and privacy

if and only if

 $\pi = (S^{\pi}, R^{\pi})$ is a Nash equilibrium for Game^{π} with utility functions U = (U_S, U_R)

Proof ("Crypto → Game")

Assume π is not game-theoretically secure

- $\Leftrightarrow \pi = (S^{\pi}, R^{\pi})$ is not NE for Game^{π}
- \Leftrightarrow \forall Choice, $\exists G_S^*, G_R^*, S^*, R^*, x_0, x_1, x, z, c s.t.$

• Case 1: $U_{S}((S^{*},G_{S}), (R^{\pi},G_{R})) > U_{S}((S^{\pi},G_{S}), (R^{\pi},G_{R})) + \varepsilon_{S}$ or

• Case 2:

 $U_{R}((S^{\pi},G_{S}), (\mathbb{R}^{*},G_{R})) > U_{R}((S^{\pi},G_{S}), (\mathbb{R}^{\pi},G_{R})) + \varepsilon_{R}$

Proof ("Crypto → Game")

Case 1: $U_{S}((S^{*},G_{S}), (R^{\pi},G_{R})) > U_{S}((S^{\pi},G_{S}), (R^{\pi},G_{R})) + ε_{S}$

• Recall that $U_{S}((S^{\pi}, G_{S}), (R^{\pi}, G_{R}))$ = $(-\alpha_{S}) \cdot (Pr[guess_{R} = b] - 1/2)$ + $\beta_{S} \cdot (Pr[fin=0 \lor (fin=1 \land output_{R} = x_{c})] - 1)$ + $\gamma_{S} \cdot (Pr[guess_{S} = c] - 1/2)$

• When $S^{\pi} \rightarrow S^{*}$

Case 1-a: $Pr[guess_R = b]$ is lower Case 1-b: $Pr[fin=0 \lor (fin=1 \land output_R = x_c)]$ is higher Case 1-c: $Pr[guess_S = c]$ is higher

Proof ("Crypto → Game")

- Case 1-a: Pr[guess_R = b] is lower
 - → Since Pr[guess_R = b] $\leq 1/2$ + negl when S*, (R^{π}, G_R) breaks the privacy for S
- Case 1-b: $Pr[fin=0 \lor (fin=1 \land output_R=x_c)]$ is higher
 - → Pr[fin=0 ∨ (fin=1 ∧ output_R=x_c)] < 1 − ε when S^π
 → Not cryptographically correct
- Case 1-c: Pr[guess_S = c] is higher
 - → Pr[guess_S = c] \neq 1/2 ± negl when S*
 - \rightarrow (S^{*}, G_S) breaks the privacy for R

Assume π is not cryptographically secure

- \Leftrightarrow
 - Case 1: Not cryptographically correct
 - Case 2: Cryptographically correct
 - Case 2-a: Not private for S when Rⁿ
 - Case 2-b: Private for S when Rⁿ, not private for R
 - Case 2-c: Private for R, not private for S when R*

Case 1: Not cryptographically correct

- → $\exists x_0, x_1, c \text{ s.t. } Pr[output_R = x_c] < 1 \varepsilon_1$
- → $U_{S}((S^{\pi}, G_{S}), (R^{\pi}, G_{R})) < B_{S} \cdot ε_{1}$ $U_{S}((S^{def}, G_{S}), (R^{\pi}, G_{R})) = 0$
- \clubsuit U_S is higher when S^{\pi} \rightarrow S^def
 - S^{def}: Abort before start
 - Pr[fin=0 \lor (fin=1 \land output_R=x_c)] is higher when S^{π} \rightarrow S^{def}

- Case 2: Cryptographically correct
 - Case 2-a: Not private for S when Rⁿ
 - \rightarrow \exists D₁ who distinguishes view_{Rπ}
 - $U_{S}((S^{\pi}, G_{S}), (R^{\pi}, G_{R})) < -\alpha_{S} \cdot \varepsilon_{2} \\ U_{S}((S^{stop}, G_{S}), (R^{\pi}, G_{R})) = 0 \ (\text{when } G_{R} \text{ uses } D_{1})$
 - \rightarrow U_S is higher when S^{π} \rightarrow S^{stop}
 - S^{stop}: Abort after receiving a message
 - Pr[guess_R = b] is higher when $S^{\pi} \rightarrow S^{stop}$

- Case 2: Cryptographically correct
 - Case 2-b: Private for S when Rⁿ, not for R
 - \rightarrow 3 S* and D₂ who distinguishes view_{S*}
 - → $\exists D_2$ who distinguishes view_{Sπ} (since two-message OT)
 - $U_R((S^{\pi},G_S), (\mathbb{R}^{\pi},G_R)) < -\alpha_R \cdot \varepsilon_3 \\ U_R((S^{\pi},G_S), (\mathbb{R}^{def},G_R)) = 0 \text{ (when } G_S \text{ uses } D_2)$
 - R^{def}: Abort before start
 - Pr[guess_S = c] is higher when $R^{\pi} \rightarrow R^{def}$

Case 2: Cryptographically correct

- Case 2-c: Private for R, not for S when R*
- \rightarrow \exists R^{*} and D₃ who distinguishes view_{R^{*}}
- $U_{R}((S^{\pi},G_{S}), (\mathbb{R}^{\pi},G_{R})) < negl$ $U_{R}((S^{\pi},G_{S}), (\mathbb{R}^{*},G_{R})) = \gamma_{R} \cdot \varepsilon_{4} \text{ (when } G_{R} \text{ uses } D_{3})$
- → U_R is higher when $R^{\pi} \rightarrow R^*$
 - Pr[guess_R = b] is higher when $R^{\pi} \rightarrow R^*$

Notes

Aain theorem holds even if $\gamma_S = 0$ or $\beta_R = 0$

$$U_{S}((S, G_{S}), (R, G_{R}))$$

$$= (-\alpha_{S}) \cdot (\Pr[guess_{R} = b] - 1/2)$$

$$+ \beta_{S} \cdot (\Pr[fin=0 \lor (fin=1 \land output_{R} = x_{c})] - 1)$$

$$+ \gamma_{S} \cdot (\Pr[guess_{S} = c] - 1/2)$$

$$U_{R}((S, G_{S}), (R, G_{R}))$$

$$= (-\alpha_{R}) \cdot (Pr[guess_{S} = c] - 1/2)$$

$$+ \beta_{R} \cdot (Pr[fin=0 \lor (fin=1 \land output_{R} = x_{c})] - 1)$$

$$+ \gamma_{R} \cdot (Pr[guess_{R} = b] - 1/2)$$

Conclusions (1/2)

Game-theoretically characterize "two-message" OT

Protocol π = (S^π, R^π) for two-message OT satisfies cryptographic correctness and privacy
⇔ π = (S^π, R^π) is a Nash equilibrium for Game^π with utility functions U = (U_S, U_R)

- Advantages compared to [ACH '11]
 - 1. Game between two rational players
 - 2. Characterize correctness and privacy by a single game
 - 3. Malicious adversaries

Conclusions (2/2)

The first step toward understanding how OT protocols work for rational players

Future work

- Characterize OT with the ideal/real simulation-based security
- Characterize other protocols
- Explore good examples of rational cryptography