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Summary of the Work 

Main Result 
  An explicit expression for #(correctable errors of weight 

d/2+1) for the first-order Reed-Muller codes is derived 
  d : the minimum distance of the code 

Main Techniques 
  Monotone error structure (Larger half) 

  Monotone error structure appeared in [Peterson, Weldon, 1972] 
  Larger half was introduced by [Helleseth, Kløve, Levenshtein, 

2005] 
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Problem Setting 

  Binary linear code  C ⊆ {0,1}n  

  Error vector  e ∊ {0,1}n 

  If  w(e) < d/2  ⇒  e  is always correctable 
If  w(e) ≥ d/2   ⇒  ? 
  w(x) : the Hamming weight of  x  

In this work, we investigate 
   #(correctable errors of weight  i )  for  i  ≥ d/2  
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Correctable/Uncorrectable Errors 

  Correctable errors  E0(C)  
= Correctable by Minimum Distance (MD) decoding 
  E0

i(C) : Correctable errors of weight i 

  Uncorrectable errors  E1(C) = {0,1}n 〵E0(C) 
  E1

i(C) : Uncorrectable errors of weight i 

    

  MD decoding  
  Output a nearest (w.r.t. Hamming dist.) codeword to the input 
  Perform ML decoding for binary symmetric channels 
  Syndrome decoding is an MD decoding 
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Syndrome Decoding 

  Coset partitioning 

  Syndrome decoding 

  Output   y + vi  if  y∈Ci   ( y is the input) 
  Coset leaders = Correctable errors 
  Perform MD decoding 

: Coset of C 

: Coset leader of Ci 
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First-Order Reed-Muller Code 

  RMm : The first-order Reed-Muller code of length 2m 

  Dimension = m+1 
  Minimum distance d = 2m-1 

  RMm ⇔ Linear Boolean functions with m variables 

     |E0
i(RMm)|×2m+1 = #(Boolean func. of nonlinearity i )  

  Nonlinearity of Boolean function  f 
 Distance between  f  and linear Boolean functions 
  Important criteria for cryptographic applications [Canteaut, 

Carlet, Charpin, Fontaine, 2001] 
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Previous Results for |E0(RMm)| 

  [Berlekamp, Welch, 1972]  
  The weight distributions of all cosets of RM5 

 ⇒ |E0
i(RM5)|  for all  0 ≤ i ≤ n 

  By computer 

  [Wu, 1998] 
  An explicit expression for |E0

d/2(RMm)| 
  By revealing the structure of coset leaders of weight d/2 

 1.  Coset leaders of weigh d/2  ⇒  3 types 
 2.  Determine #(coset leaders) for each type 
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Our Results 

  An explicit expression for |E0
d/2+1(RMm)| 

  By using the monotone error structure (Larger half) 
 Monotone error structure appeared in [Peterson, Weldon, 

1972] 
 Larger half was introduced by [Helleseth, Kløve, Levenshtein 

2005] 

  Lead to #(Boolean functions of nonlinarity d/2+1) 

  Compared to [Wu, 1998], 
 Our approach does not fully reveal the structure of coset 

leaders of weight d/2+1 
 Our approach can give a simpler proof for |E0

d/2(RMm)| 
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Monotone Error Structure 

  Recall that a coset leader is a minimum weight vector in 
a coset 

  There may be one more minimum weight vectors in the 
same coset 
⇒ Any of them will do 

  If we take the lexicographically smallest one for all 
cosets, 
⇒ Correctable/uncorrectable errors have a monotone 
    structure 
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Monotone Error Structure 

  Notation 
  Support of  v  :  S(v) = { i : vi≠0 }  
   v  is covered by  u  :   S(v) ⊆ S(u)  

  Monotone error structure 
   v is correctable  
        ⇒ all  u  s.t.  S(v) ⊆ S(u)  are correctable 
   v is uncorrectable  
        ⇒ all  u  s.t.  S(u) ⊇ S(v)  are uncorrectable 

  Example 
  1100 is correctable     ⇒ 0000, 1000, 0100 are correctable 
  0011 is uncorrectable  ⇒ 1011, 0111, 1111 are uncorrectable 
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Minimal uncorrectable errors 

  Errors have the monotone structure (w.r.t ⊆) 
⇒ E1(C) is characterized by minimal vectors (w.r.t. ⊆)  

  Minimal uncorrectable errors M1(C) 
  = Minimal vectors (w.r.t. ⊆) in E1(C) 
   M1(C) uniquely determines E1(C) 

  Larger half LH(c) of c∈C  
  Introduced for characterizing  M1(C) in [HKL2005] 
  Combinatorial construction is given in [HKL2005] 

   M1(C) ⊆ LH(C〵{0}), where 
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Proof Sketch of Our Results 
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Proof Sketch of Our Results 

  Consider Wm = { v : S(v)⊆S(c) for c∈RMm〵{0,1}, w(v)=d/2+1} 
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Proof Sketch of Our Results 
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The Results 

  For m ≥ 5, 

    
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Conclusions 

  #(correctable errors of weight d/2+1) is derived 
for the first-order Reed-Muller codes 

  Monotone error stucture & larger half are main tools 
  Our approch does not reveal the structure of coset 

leaders of weight d/2+1 
 [Wu, 1998] reveals the structure of coset leaders of weight 

d/2 to derive #(correctable errors of weight d/2) 


