Correctable Errors of Weight Half the Minimum Distance Plus One for the First-Order Reed-Muller Codes

Kenji Yasunaga Toru Fujiwara
Osaka University, Japan

Applied Algebra, Algebraic Algorithms, and Error Correcting Codes (AAECC-17), Indian Institute of Science, Bangalore, December 16-20, 2007

Summary of the Work

Main Result

- An explicit expression for \#(correctable errors of weight $d / 2+1$) for the first-order Reed-Muller codes is derived
- d : the minimum distance of the code

Main Techniques

- Monotone error structure (Larger half)
- Monotone error structure appeared in [Peterson, Weldon, 1972]
- Larger half was introduced by [Helleseth, Kløve, Levenshtein, 2005]

Outline

■ Correctable Errors

- First-order Reed-Muller Codes
- Previous Results

■ Our Results

- Monotone Error Structure
- Proof Sketch of Our Results

Outline

■ Correctable Errors

- First-order Reed-Muller Codes
- Previous Results

■ Our Results

- Monotone Error Structure
- Proof Sketch of Our Results

Problem Setting

- Binary linear code $C \subseteq\{0,1\}^{n}$
- Error vector $\boldsymbol{e} \in\{0,1\}^{n}$
- If $w(\boldsymbol{e})<d / 2 \Rightarrow \boldsymbol{e}$ is always correctable If $w(\boldsymbol{e}) \geq d / 2 \Rightarrow$?
- $w(\boldsymbol{x})$: the Hamming weight of \boldsymbol{x}

In this work, we investigate \#(correctable errors of weight \boldsymbol{i}) for $\boldsymbol{i} \geq d / 2$

Correctable/Uncorrectable Errors

- Correctable errors $E^{0}(C)$
= Correctable by Minimum Distance (MD) decoding
- $E^{0}{ }_{i}(C)$: Correctable errors of weight \boldsymbol{i}
- Uncorrectable errors $E^{1}(C)=\{0,1\}^{n} \backslash E^{0}(C)$
- $E^{1}{ }_{i}(C)$: Uncorrectable errors of weight \boldsymbol{i}
- $\left|E_{i}^{0}(C)\right|+\left|E_{i}^{1}(C)\right|=\binom{n}{i}$
- MD decoding
- Output a nearest (w.r.t. Hamming dist.) codeword to the input
- Perform ML decoding for binary symmetric channels
- Syndrome decoding is an MD decoding

Syndrome Decoding

■ Coset partitioning

$$
\begin{aligned}
\{0,1\}^{n} & =\bigcup_{i=1}^{2^{n-k}} C_{i}, \quad C_{i} \cap C_{j}=\phi \text { for } i \neq j \\
C_{i} & =\left\{\boldsymbol{v}_{i}+\boldsymbol{c}: \boldsymbol{c} \in C\right\}: \text { Coset of } C \\
\boldsymbol{v}_{i} & =\underset{v \in C_{i}}{\arg \min } w(\boldsymbol{v}) \quad: \text { Coset leader of } C_{i}
\end{aligned}
$$

- Syndrome decoding
- Output $y+v_{i}$ if $y \in C_{i}$ (\boldsymbol{y} is the input)
- Coset leaders = Correctable errors
- Perform MD decoding

Outline

- Correctable Errors

■ First-order Reed-Muller Codes

- Previous Results

■ Our Results

- Monotone Error Structure
- Proof Sketch of Our Results

First-Order Reed-Muller Code

■ RM_{m} : The first-order Reed-Muller code of length 2^{m}

- Dimension $=m+1$
- Minimum distance $d=2^{m-1}$
- $\mathrm{RM}_{m} \Leftrightarrow$ Linear Boolean functions with m variables $\left|E^{0}{ }_{i}\left(\mathrm{RM}_{m}\right)\right| \times 2^{m+1}=$ \#(Boolean func. of nonlinearity \boldsymbol{i})
- Nonlinearity of Boolean function \boldsymbol{f}
- Distance between \boldsymbol{f} and linear Boolean functions
- Important criteria for cryptographic applications [Canteaut, Carlet, Charpin, Fontaine, 2001]

Outline

■ Correctable Errors

- First-order Reed-Muller Codes

■ Previous Results

■ Our Results

- Monotone Error Structure
- Proof Sketch of Our Results

Previous Results for $\left|E^{0}\left(\mathrm{RM}_{m}\right)\right|$

■ [Berlekamp, Welch, 1972]

- The weight distributions of all cosets of RM_{5}
$\Rightarrow\left|E^{0}\left(\mathrm{RM}_{5}\right)\right|$ for all $0 \leq i \leq n$
- By computer
- [Wu, 1998]
- An explicit expression for $\left|E_{d / 2}^{0}\left(\mathrm{RM}_{m}\right)\right|$
- By revealing the structure of coset leaders of weight $d / 2$

1. Coset leaders of weigh $d / 2 \Rightarrow 3$ types
2. Determine \#(coset leaders) for each type

Outline

■ Correctable Errors

- First-order Reed-Muller Codes
- Previous Results

■ Our Results

- Monotone Error Structure
- Proof Sketch of Our Results

Our Results

- An explicit expression for $\left|E_{d / 2+1}^{0}\left(\mathrm{RM}_{m}\right)\right|$
- By using the monotone error structure (Larger half)
- Monotone error structure appeared in [Peterson, Weldon, 1972]
- Larger half was introduced by [Helleseth, Kløve, Levenshtein 2005]
- Lead to \#(Boolean functions of nonlinarity $d / 2+1$)
- Compared to [Wu, 1998],
- Our approach does not fully reveal the structure of coset leaders of weight $d / 2+1$
\bullet Our approach can give a simpler proof for $\left|E_{d / 2}^{0}\left(\mathrm{RM}_{m}\right)\right|$

Outline

■ Correctable Errors

- First-order Reed-Muller Codes
- Previous Results

■ Our Results

- Monotone Error Structure
- Proof Sketch of Our Results

Monotone Error Structure

- Recall that a coset leader is a minimum weight vector in a coset
- There may be one more minimum weight vectors in the same coset
\Rightarrow Any of them will do
■ If we take the lexicographically smallest one for all cosets,
\Rightarrow Correctable/uncorrectable errors have a monotone structure

Monotone Error Structure

- Notation
- Support of $\boldsymbol{v}: S(\boldsymbol{v})=\left\{i: \boldsymbol{v}_{i} \neq 0\right\}$
- \boldsymbol{v} is covered by $\boldsymbol{u}: S(\boldsymbol{v}) \subseteq S(\boldsymbol{u})$
- Monotone error structure
v is correctable

$$
\Rightarrow \text { all } \boldsymbol{u} \text { s.t. } S(\boldsymbol{v}) \subseteq S(\boldsymbol{u}) \text { are correctable }
$$

v is uncorrectable

$$
\Rightarrow \text { all } \boldsymbol{u} \text { s.t. } S(\boldsymbol{u}) \supseteq S(\boldsymbol{v}) \text { are uncorrectable }
$$

- Example
- 1100 is correctable $\Rightarrow 0000,1000,0100$ are correctable
- 0011 is uncorrectable $\Rightarrow 1011,0111,1111$ are uncorrectable

Minimal uncorrectable errors

■ Errors have the monotone structure (w.r.t \subseteq)
$\Rightarrow E^{1}(C)$ is characterized by minimal vectors (w.r.t. \subseteq)

- Minimal uncorrectable errors $M^{1}(C)$
- = Minimal vectors (w.r.t. \subseteq) in $E^{1}(C)$
- $M^{1}(C)$ uniquely determines $E^{1}(C)$
- Larger half $L H(c)$ of $\boldsymbol{c} \in C$
- Introduced for characterizing $M^{1}(C)$ in [HKL2005]
- Combinatorial construction is given in [HKL2005]
- $M^{1}(C) \subseteq L H(C \backslash\{0\})$, where $L H(S)=\bigcup_{c \in S} L H(\boldsymbol{c})$

Outline

■ Correctable Errors

- First-order Reed-Muller Codes
- Previous Results

■ Our Results

- Monotone Error Structure
- Proof Sketch of Our Results

Proof Sketch of Our Results

- We will determine $\left|E_{d / 2+1}^{1}\left(\mathrm{RM}_{m}\right)\right|$
- Observe the relations between $E_{d / 2}^{1}\left(\mathrm{RM}_{m}\right), E_{d / 2+1}^{1}\left(\mathrm{RM}_{m}\right)$, $L H\left(\mathrm{RM}_{m} \backslash\{\mathbf{0}, \mathbf{1}\}\right), M^{\mathbf{1}}\left(\mathrm{RM}_{m}\right)$

Proof Sketch of Our Results

■ We will determine $\left|E_{d / 2+1}^{1}\left(\mathrm{RM}_{m}\right)\right|$

- Observe the relations between $E_{d / 2}^{1}\left(\mathrm{RM}_{m}\right), E_{d / 2+1}^{1}\left(\mathrm{RM}_{m}\right)$, $L H\left(\mathrm{RM}_{m} \backslash\{\mathbf{0}, \mathbf{1}\}\right), M^{1}\left(\mathrm{RM}_{m}\right)$

$$
L H\left(\mathrm{RM}_{m} \backslash\{\mathbf{0}, \mathbf{1}\}\right) \subseteq E_{d / 2}^{1}\left(\mathrm{RM}_{m}\right) \cup E_{d / 2+1}^{1}\left(\mathrm{RM}_{m}\right)
$$

Proof Sketch of Our Results

■ We will determine $\left|E_{d / 2+1}^{1}\left(\mathrm{RM}_{m}\right)\right|$

- Observe the relations between $E_{d / 2}^{1}\left(\mathrm{RM}_{m}\right), E_{d / 2+1}^{1}\left(\mathrm{RM}_{m}\right)$, $L H\left(\mathrm{RM}_{m} \backslash\{\mathbf{0}, \mathbf{1}\}\right), M^{1}\left(\mathrm{RM}_{m}\right)$

$$
M^{1}\left(\mathrm{RM}_{m}\right) \subseteq L H\left(\mathrm{RM}_{m} \backslash\{\mathbf{0}, \mathbf{1}\}\right) \subseteq E_{d 2}^{1}\left(\mathrm{RM}_{m}\right) \cup E_{d / 2+1}^{1}\left(\mathrm{RM}_{m}\right)
$$

Proof Sketch of Our Results

- Consider $W_{m}=\left\{\boldsymbol{v}: S(\boldsymbol{v}) \subseteq S(\boldsymbol{c})\right.$ for $\left.\boldsymbol{c} \in \mathrm{RM}_{m} \backslash\{\mathbf{0}, \mathbf{1}\}, w(\boldsymbol{v})=d / 2+1\right\}$

Proof Sketch of Our Results

- Consider $W_{m}=\left\{\boldsymbol{v}: S(\boldsymbol{v}) \subseteq S(\boldsymbol{c})\right.$ for $\left.\boldsymbol{c} \in \mathrm{RM}_{m} \backslash\{\mathbf{0}, \mathbf{1}\}, w(\boldsymbol{v})=d / 2+1\right\}$

Proof Sketch of Our Results

- Consider $W_{m}=\left\{\boldsymbol{v}: S(\boldsymbol{v}) \subseteq S(\boldsymbol{c})\right.$ for $\left.\boldsymbol{c} \in \mathrm{RM}_{m} \backslash\{\mathbf{0}, \mathbf{1}\}, w(\boldsymbol{v})=d / 2+1\right\}$

Proof Sketch of Our Results

- Observe that the vectors \boldsymbol{v} in
 are non-minimal
$\Rightarrow v$ is obtained by adding a weight-one vector to a minimal uncorrectable error

Proof Sketch of Our Results

- Observe that the vectors \boldsymbol{v} in \square are non-minimal $\Rightarrow v$ is obtained by adding a weight-one vector to a minimal uncorrectable error
\Rightarrow Construct such a set $V_{m} \square$ and determine $\left|V_{m} \backslash W_{m}\right|$

The Results

- For $m \geq 5$,
$\left|E_{d / 2+1}^{1}\left(\mathrm{RM}_{m}\right)\right|=4\left(2^{m}-1\right)\left(2^{m-3}+1\right)\binom{2^{m-1}}{2^{m-2}+1}-\left(4^{m-2}+3\right)\binom{2^{m}}{3}$
- $\left|E_{d / 2+1}^{0}\left(\mathrm{RM}_{m}\right)\right|+\left|E_{d / 2+1}^{1}\left(\mathrm{RM}_{m}\right)\right|=\binom{2^{m}}{2^{m-2}+1}$

Conclusions

- \#(correctable errors of weight $d / 2+1$) is derived for the first-order Reed-Muller codes
- Monotone error stucture \& larger half are main tools
- Our approch does not reveal the structure of coset leaders of weight $d / 2+1$
- [Wu, 1998] reveals the structure of coset leaders of weight $d / 2$ to derive \#(correctable errors of weight $d / 2$)

