Correctable Errors of Weight Half the Minimum Distance Plus One for the First-Order Reed-Muller Codes

<u>Kenji Yasunaga</u> Toru Fujiwara Osaka University, Japan

Applied Algebra, Algebraic Algorithms, and Error Correcting Codes (AAECC-17), Indian Institute of Science, Bangalore, December 16-20, 2007

Summary of the Work

Main Result

- An explicit expression for #(correctable errors of weight d/2+1) for the first-order Reed-Muller codes is derived
 - *d* : the minimum distance of the code

Main Techniques

- Monotone error structure (Larger half)
 - Monotone error structure appeared in [Peterson, Weldon, 1972]
 - Larger half was introduced by [Helleseth, Kløve, Levenshtein, 2005]

- Correctable Errors
- First-order Reed-Muller Codes
- Previous Results
- Our Results
- Monotone Error Structure
- Proof Sketch of Our Results

- Correctable Errors
- First-order Reed-Muller Codes
- Previous Results
- Our Results
- Monotone Error Structure
- Proof Sketch of Our Results

Problem Setting

- Binary linear code $C \subseteq \{0,1\}^n$
- Error vector $e \in \{0,1\}^n$
- If $w(e) \le d/2 \Rightarrow e$ is always correctable If $w(e) \ge d/2 \Rightarrow ?$
 - w(x): the Hamming weight of x

In this work, we investigate #(correctable errors of weight i) for $i \ge d/2$

Correctable/Uncorrectable Errors

- Correctable errors $E^0(C)$
 - = Correctable by Minimum Distance (MD) decoding
 - $E^{0}_{i}(C)$: Correctable errors of weight i
- Uncorrectable errors $E^1(C) = \{0,1\}^n \setminus E^0(C)$
 - $E^{1}_{i}(C)$: Uncorrectable errors of weight i

•
$$|E_i^0(C)| + |E_i^1(C)| = \binom{n}{i}$$

- MD decoding
 - Output a nearest (w.r.t. Hamming dist.) codeword to the input
 - Perform ML decoding for binary symmetric channels
 - Syndrome decoding is an MD decoding

Syndrome Decoding

Coset partitioning

$$\{0,1\}^{n} = \bigcup_{i=1}^{2^{n-k}} C_{i}, \quad C_{i} \cap C_{j} = \phi \text{ for } i \neq j$$
$$C_{i} = \{v_{i} + c : c \in C\} : \text{Coset of } C$$
$$v_{i} = \underset{v \in C_{i}}{\operatorname{arg\,min}} w(v) \quad : \text{Coset leader of } C_{i}$$

Syndrome decoding

- Output $y + v_i$ if $y \in C_i$ (y is the input)
- Coset leaders = Correctable errors
- Perform MD decoding

- Correctable Errors
- First-order Reed-Muller Codes
- Previous Results
- Our Results
- Monotone Error Structure
- Proof Sketch of Our Results

First-Order Reed-Muller Code

R M_m : The first-order Reed-Muller code of length 2^m

- Dimension = m+1
- Minimum distance $d = 2^{m-1}$
- $RM_m \Leftrightarrow$ Linear Boolean functions with *m* variables $|E_i^0(RM_m)| \times 2^{m+1} = #(Boolean func. of nonlinearity$ *i*)
 - Nonlinearity of Boolean function f
 - Distance between f and linear Boolean functions
 - Important criteria for cryptographic applications [Canteaut, Carlet, Charpin, Fontaine, 2001]

- Correctable Errors
- First-order Reed-Muller Codes
- Previous Results
- Our Results
- Monotone Error Structure
- Proof Sketch of Our Results

Previous Results for $|E^0(RM_m)|$

[Berlekamp, Welch, 1972]

- The weight distributions of all cosets of RM_5 $\Rightarrow |E_i^0(RM_5)|$ for all $0 \le i \le n$
- By computer
- [Wu, 1998]
 - An explicit expression for $|E^0_{d/2}(RM_m)|$
 - By revealing the structure of coset leaders of weight d/2
 - 1. Coset leaders of weigh $d/2 \Rightarrow 3$ types
 - 2. Determine #(coset leaders) for each type

- Correctable Errors
- First-order Reed-Muller Codes
- Previous Results
- Our Results
- Monotone Error Structure
- Proof Sketch of Our Results

Our Results

- An explicit expression for $|E^0_{d/2+1}(RM_m)|$
 - By using the monotone error structure (Larger half)
 - Monotone error structure appeared in [Peterson, Weldon, 1972]
 - Larger half was introduced by [Helleseth, Kløve, Levenshtein 2005]
 - Lead to #(Boolean functions of nonlinarity d/2+1)
 - Compared to [Wu, 1998],
 - Our approach does not fully reveal the structure of coset leaders of weight d/2+1
 - Our approach can give a simpler proof for $|E^0_{d/2}(RM_m)|$

- Correctable Errors
- First-order Reed-Muller Codes
- Previous Results
- Our Results
- Monotone Error Structure
- Proof Sketch of Our Results

Monotone Error Structure

- Recall that a coset leader is a minimum weight vector in a coset
- There may be one more minimum weight vectors in the same coset
 - \Rightarrow Any of them will do
- If we take the lexicographically smallest one for all cosets,
 - ⇒ Correctable/uncorrectable errors have a monotone structure

Monotone Error Structure

Notation

- Support of $v : S(v) = \{ i : v_i \neq 0 \}$
- v is covered by u : $S(v) \subseteq S(u)$
- Monotone error structure
 v is correctable
 ⇒ all *u* s.t. S(*v*) ⊆ S(*u*) are correctable
 v is uncorrectable
 ⇒ all *u* s.t. S(*u*) ⊇ S(*v*) are uncorrectable

Example

- 1100 is correctable \Rightarrow 0000, 1000, 0100 are correctable
- 0011 is uncorrectable \Rightarrow 1011, 0111, 1111 are uncorrectable ₁₆

Minimal uncorrectable errors

- Errors have the monotone structure (w.r.t \subseteq) ⇒ $E^1(C)$ is characterized by minimal vectors (w.r.t. \subseteq)
- Minimal uncorrectable errors $M^1(C)$
 - = Minimal vectors (w.r.t. \subseteq) in $E^1(C)$
 - $M^1(C)$ uniquely determines $E^1(C)$
- Larger half LH(c) of $c \in C$
 - Introduced for characterizing $M^1(C)$ in [HKL2005]
 - Combinatorial construction is given in [HKL2005]
 - $M^1(C) \subseteq LH(C \setminus \{0\})$, where $LH(S) = \bigcup_{c \in S} LH(c)$

- Correctable Errors
- First-order Reed-Muller Codes
- Previous Results
- Our Results
- Monotone Error Structure
- Proof Sketch of Our Results

- We will determine $|E_{d/2+1}^1(RM_m)|$
- Observe the relations between $E_{d/2}^1(\mathrm{RM}_m)$, $E_{d/2+1}^1(\mathrm{RM}_m)$, $LH(\mathrm{RM}_m \setminus \{0, 1\})$, $M^1(\mathrm{RM}_m)$

- We will determine $|E_{d/2+1}^1(RM_m)|$
- Observe the relations between $E_{d/2}^1(\mathrm{RM}_m)$, $E_{d/2+1}^1(\mathrm{RM}_m)$, $LH(\mathrm{RM}_m \setminus \{0, 1\})$, $M^1(\mathrm{RM}_m)$

 $LH(\mathrm{RM}_m \setminus \{\mathbf{0},\mathbf{1}\}) \subseteq E^1_{d/2}(\mathrm{RM}_m) \cup E^1_{d/2+1}(\mathrm{RM}_m)$

- We will determine $|E_{d/2+1}^1(RM_m)|$
- Observe the relations between $E_{d/2}^1(\mathrm{RM}_m)$, $E_{d/2+1}^1(\mathrm{RM}_m)$, $LH(\mathrm{RM}_m \setminus \{0, 1\})$, $M^1(\mathrm{RM}_m)$

• Consider $W_m = \{ v : S(v) \subseteq S(c) \text{ for } c \in RM_m \setminus \{0,1\}, w(v) = d/2+1 \}$

• Consider $W_m = \{ v : S(v) \subseteq S(c) \text{ for } c \in RM_m \setminus \{0,1\}, w(v) = d/2 + 1 \}$

• Consider $W_m = \{ v : S(v) \subseteq S(c) \text{ for } c \in RM_m \setminus \{0,1\}, w(v) = d/2+1 \}$

- Observe that the vectors v in _____ are non-minimal
 - \Rightarrow v is obtained by adding a weight-one vector to a minimal uncorrectable error

 \Rightarrow Construct such a set V_m and determine $|V_m \setminus W_m|$

The Results

For
$$m \ge 5$$
,
 $|E_{d/2+1}^1(\text{RM}_m)| = 4(2^m - 1)(2^{m-3} + 1)\binom{2^{m-1}}{2^{m-2} + 1} - (4^{m-2} + 3)\binom{2^m}{3}$

$$|E_{d/2+1}^{0}(\mathrm{RM}_{m})| + |E_{d/2+1}^{1}(\mathrm{RM}_{m})| = \begin{pmatrix} 2^{m} \\ 2^{m-2} + 1 \end{pmatrix}$$

Conclusions

- #(correctable errors of weight d/2+1) is derived for the first-order Reed-Muller codes
 - Monotone error stucture & larger half are main tools
 - Our approch does not reveal the structure of coset leaders of weight d/2+1
 - [Wu, 1998] reveals the structure of coset leaders of weight d/2 to derive #(correctable errors of weight d/2)