Quantifying the Security Levels of Cryptographic Primitives

Kenji Yasunaga

Tokyo Institute of Technology, Japan

T3: Information Sciences, TENCON 2022 Nov. 1-4 2022 @ Hybrid (Hong Kong | Online)

Q1. Which is more serious?

Attack with success probability 1 %

Attack with success probability 50 %

Q2. Which is more serious?

\$10 attack with success prob. 1 %

\$1000 attack with success prob. 50 %

Q3. Which is more serious?

Attack with success probability 40 %

Attack with success probability 50 %

Q4. Which is more serious?

Attack with success probability 60 %

Attack with success probability 60 %

Game	1	2	3	4	5	6	7	8	9	10
Prediction	0	0	0	0	1	0	0	0	0	0
Outcome	0	0	1	0	1	1	0	1	0	1

Game	1	2	3	4	5	6	7	8	9	10
Prediction	1	0	0	0	1	0	0	1	1	1
Outcome	0	0	1	0	1	1	0	1	0	1

Q4. Which is more serious?

Attack with success probability 60 %

Attack with success probability 60 %

Bit Security

What is Bit Security?

A "well-established" measure of quantifying the security levels of cryptographic primitives

Primitive *P* has *k*-bit security $\Leftrightarrow 2^k$ operations are needed to break *P*

Bit Security of One-Way Function

$$f: \{0,1\}^n \to \{0,1\}^n \qquad x \xrightarrow{\text{easy}} f(x)$$

$$\exists A \text{ with comp. cost } T \text{ s.t. } \Pr[A \text{ breaks } OW] = \varepsilon \qquad f(x)$$

$$f(x) \to y$$

Bit security is $\leq \log_2\left(\frac{T}{\varepsilon}\right) = 0$
Why?

What if invoking *A* in total *N* times?

Pr[some A breaks OW] will be amplified to εN

The total cost is
$$O(N \cdot T) = O\left(\frac{T}{\varepsilon}\right)$$
 BS = $\min_{A} \left\{ \log_2\left(\frac{T}{\varepsilon}\right) \right\}$

Types of Security Games

Search Games

- One-way function (OWF)
- Signature scheme

finds a solution from $\{0,1\}^n$ for n >> 1

Bit security can be defined similarly to OWF

• Factoring / Computational Diffie-Hellman (CDH) assumptions

Decision Games

- Pseudorandom generator (PRG)
- Encryption scheme
- Decisional Diffie-Hellman (DDH) assumption

Questions

How to define bit security of decision games ?

Is the "conventional" advantage of

$$adv^{conv} = 2 \cdot \left| \Pr \left[\begin{array}{c} \checkmark \\ \checkmark \end{array} \right] \right|$$
 wins the game $\left| -\frac{1}{2} \right|$

the right measure for bit security?

A Peculiar Problem: PRG against Linear Tests

Pseudorandom generator (PRG) $g: \{0,1\}^n \rightarrow \{0,1\}^m$

$$y = \begin{cases} g(U_n) \ (u = 0) \\ U_m \ (u = 1) \end{cases} \qquad y \longrightarrow \qquad \checkmark \qquad \checkmark \qquad u'$$

For any g, \exists linear test L of cost O(n) s.t.

$$\Pr[L(g(U_n)) = 1] \approx \frac{1}{2} \left(1 + 2^{-\frac{n}{2}}\right) \& \Pr[L(U_m) = 1] = \frac{1}{2} \quad \text{[Alon et al. (1992)]}$$

If $BS = \min\left\{\log_2\left(\frac{T}{adv^{conv}}\right)\right\}$, it must be $\leq \frac{n}{2}$
Counterintuitive!

Bit Security Frameworks

[Micciancio, Walter (Eurocrypt 2018)]

- First theoretical framework of BS
- Allowing \perp (failure symbol) as output
- Based on Mutual Information and Shannon Entropy

[Watanabe, Yasunaga (Asiacrypt 2021)]

• Operational approach

[Watanabe, Yasunaga (ePrint 2022)]

• Allowing ⊥ in the framework of [WY21]

Framework of Micciancio & Walter (2018)

Bit security is defined as
$$\min_{A} \left\{ \log_2 \left(\frac{T}{adv^{CS}(A)} \right) \right\}$$

 $adv^{CS}(A) \coloneqq \frac{I(X,Y)}{H(X)} = 1 - \frac{H(X|Y)}{H(X)}$ (Conditional Squared Advantage)
where
 $I(\cdot, \cdot) \coloneqq mutual information$
 $H(\cdot) \colon Shannon entropy$
 $X \in \{0,1\}^n$ is a random secret of game G ,
 $Y \in \{0,1\}^n$ is defined as
 $Y = \begin{cases} \bot & \text{if } A \text{ outputs } \bot \\ X & \text{if } A \text{ wins game } G \\ \text{uniform over } \{0,1\}^n \setminus \{X\} & \text{o. w.} \end{cases}$

Framework of Micciancio & Walter (2018)

The CS advantage can be approximated as $adv^{CS}(A) \approx \Pr[A \text{ wins } G]$ for search games $adv^{CS}(A) \approx \alpha_A \cdot (2\beta_A - 1)^2$ for decision games where $\alpha_A = \Pr[A \text{ outputs } a \neq \bot], \quad \beta_A = \Pr[A \text{ wins } G | A \text{ outputs } a \neq \bot]$

Notes:

- Resolved the linear test problem of PRG: $\Pr[L(g(U_n)) = 1] \approx \frac{1}{2} \left(1 + 2^{-\frac{n}{2}}\right) \& \Pr[L(U_m) = 1] = \frac{1}{2} \implies \operatorname{adv}^{\operatorname{CS}}(L) \approx 2^{-n}$
- Difficult to understand the operational meaning

Bit Security Framework of [WY21]

[WY21] Framework

Notes:

- Bit security is defined operationally
 - (Logarithm of) the total cost of Transformed to win game with high probability

• For decision games, 🍸 plays Bayesian hypothesis testing

Characterizing Bit Security of [WY21]

Implications of [WY21] Framework

Resolved the linear test problem of PRG: $\Pr[L(g(U_n)) = 1] \approx \frac{1}{2} \left(1 + 2^{-\frac{n}{2}}\right) \& \Pr[L(U_m) = 1] = \frac{1}{2}$ $\Rightarrow \operatorname{adv}^{\operatorname{Renyi}}(L) \in \left[2^{-n}, 2^{-\frac{n}{2}}\right]$

• Cf. $adv^{CS}(L) \approx 2^{-n}$

Two frameworks ([MW18], [WY21]) are "essentially" equivalent [WY22]:

- $\operatorname{adv}_{A}^{\operatorname{CS}} \leq O\left(\operatorname{adv}_{A}^{\operatorname{Renyi}}\right)$ for any adversary A
- Any adversary A (with $adv_A^{CS} \ll adv_A^{Renyi}$) can be converted to A' s.t. $adv_{A'}^{CS} \ge \Omega\left(adv_A^{Renyi}\right)$

Evaluations in Two Frameworks [MW18], [WY21]

(Answers to Q1 ~ Q4)

A1. (Search Games)

Pr[A wins] = 0.01 Pr[A wins] = 0.5

A2. (Search Games)

\$10 attack with success prob. 1 %

\$1000 attack with success prob. 50 %

 $TotalCost_{[MW18]} = TotalCost_{[WY21]}$ $= \frac{Cost}{Pr[A \text{ wins}]} = \frac{10}{0.01} = 1000 \text{ (dollars)}$

 $TotalCost_{[MW18]} = TotalCost_{[WY21]}$ $= \frac{Cost}{Pr[A \text{ wins}]} = \frac{1000}{0.5} = 2000 \text{ (dollars)}$

A3. (Decision Games)

Attack with success probability 40 %

Game	1 2 3 4 5 6 7 8 9 10	
Prediction	1000100010	Pr[A wins] = 0.4
Outcome	0010110101	
Game	1 2 4 7 9 3 5 6 8 10	$A = (0 \in 0.4)$
Prediction	1000101000	$A_0 = (0.0, 0.4)$ $A_0 = (0.8, 0.2)$
Outcome	00000 11111	$A_1 = (0.0, 0.2)$

 $adv^{CS} = (2 \cdot 0.4 - 1)^2 = 0.04$ $adv^{Renyi} = D_{1/2}(A_0 || A_1) \approx 0.049$ Attack with success probability 50 %

Game	1	2	3	4	5	6	7	8	Q) 1	0
Prediction	0	1	0	1	0	1	0	1	1	I	1
Outcome	0	0	1	0	1	1	0	1	()	1
Game	1	2	4	7	9		3 !	5	6	8	10
Game Prediction	1 0	2 1	4 1	7 0	9 1	(3 :) (5	6 1	8 1	10 1

 $\Pr[A \text{ wins}] = 0.5$

$$A_0 = (0.4, 0.6)$$
$$A_1 = (0.4, 0.6)$$

$$adv^{CS}(2 \cdot 0.5 - 1)^2 = 0$$

 $adv^{Renyi} = D_{1/2}(A_0 || A_1) = 0$

A4. (Decision Games)

Attack with success probability 60 %

Game	123456	7 8 9 10	
Prediction	000010	0000	$\Pr[A \text{ wins}] = 0.$
Outcome	001011	0101	
Game	124793	3 5 6 8 10	
Prediction	0 0 0 0 0	0 1 0 0 0	$A_0 = (1, 0)$
Outcome	000001	1 1 1 1 1	$A_1 = (0.6 \ 0.4)$

 $\begin{aligned} \text{adv}^{\text{CS}} &= (2 \cdot 0.6 - 1)^2 = 0.04 \\ \text{adv}^{\text{Renyi}} &= D_{1/2} \big(A_0 \big\| A_1 \big) \approx 0.51 \end{aligned}$

Attack with success probability 60 % 1 2 3 4 5 6 7 8 9 10 Game 1000100111 Prediction Pr[A wins] = 0.6Outcome 0010110101 3 5 6 8 10 Game 1 2 4 7 9 $A_0 = (0.6, 0.4)$ Prediction 0 1 0 1 1 10001 $A_1 = (0.4, 0.6)$ 1 1 1 1 1 Outcome 0 0 0 0 0

$$adv^{CS}(2 \cdot 0.6 - 1)^2 = 0.04$$

 $adv^{Renyi} = D_{1/2}(A_0 || A_1) = 0.041$ 27

Conclusions

Two frameworks for evaluating bit security

