
Weak Oblivious Transfer from
Strong One-Way Functions

Keisuke Tanaka, Akihiro Yamada, and Kenji Yasunaga

Tokyo Institute of Technology

Abstract. We consider weak oblivious transfer (OT) from strong one-way func-
tions and the paradigm of transforming unconditionally secure protocols in Mau-
rer’s bounded storage model into computational secure protocols in the random
oracle model. Weak OT is secure against adversaries which have a quadratic re-
source gap to honest parties. We prove that the random oracle can be replaced
with strong one-way functions in the OT protocol. We construct an OT protocol
achieving quadratic security from strong one-way functions.

1 Introduction

In modern cryptography, it is important to prove that constructed primitives and proto-
cols are secure. Reduction to computational assumptions is one of the general methods
to prove that the primitives and the protocols are secure. For some cryptographic primi-
tives (e.g. private key encryption, pseudo-random generators, bit commitment), several
ways of the reduction to weak assumptions are known.

Oblivious transfer (OT) is one of the fundamental cryptographic primitives. OT
was first introduced by Rabin [22] and their variations have been studied in several
works [24][18][11]. In this paper, we consider the one-out-of-two variant of OT pro-
posed by Even, Goldreich, and Lempel [7], which is shown to be equivalent to Rabin’s
OT by Crépeau [5] and more useful. The one-out-of-two OT is a protocol between two
players: a sender (Alice and a receiver (Bob). Alice has two secrets s0 and s1, and Bob
has a choice bit c. Bob wishes to receive one out of the two secrets that he chooses
(i.e., sc) without Alice learning c, while Alice wants to ensure that Bob receives only
one of the two secrets. OT can be applied to a wide variety of protocols [18][8]. In
particular, secure multi-party computation can be based on the security of OT. The con-
structions of OT require some computational assumptions such as the difficulty of fac-
toring numbers, computing discrete logarithms, and the existence of enhanced trapdoor
permutations [22][21][7].

The weakest assumption that is commonly used in cryptography is the existence of
one-way functions. If such functions do not exist, any private/public primitives do not
exist [15]. Furthermore, the existence of OT cannot be reduced to that of one-way per-
mutations in black-box constructions [16][23]. Therefore, we consider a weaker variant
of OT based on one-way functions.

We study the case in which there exists a quadratic gap between the computational
resources of honest parties and the adversary. The security achieved in such a setting
is called quadratic security. In the standard setting, the gap between the computational

resources should be super-polynomial. We here describe the quadratic security using
a key-exchange protocol as an example. In a key-exchange protocol, the two honest
parties exchange messages and share a common secret key. The standard security guar-
antees that any adversary that can obtain the secret key needs to compute in super-
polynomial time. Since the time complexity of the honest parties is bounded by some
polynomial, there is a super-polynomial gap between the computational resources of the
honest parties and the adversary. In the quadratic security, if the honest parties can share
the secret key in some polynomial time T , then any adversary needs to compute in at
least T 2 time to obtain the secret key. Thus, there is a quadratic gap between the compu-
tational resources of the honest parties and the adversary rather than a super-polynomial
gap.

A key-exchange protocol with quadratic security has been studied by Biham, Goren,
and Ishai [2]. They proposed a protocol based on strong one-way functions. Barak and
Mahmoody-Ghidary [1] showed that the quadratic gap of the key-exchange protocol in
the random oracle model is optimal. Therefore, it is significant to study cryptographic
protocols with quadratic security.

1.1 Our Contribution

We present a construction of an OT protocol with quadratic security from a strong one-
way function. In our protocol, we use an exponentially strong one-way function. Note
that we do not require any trapdoor for one-way functions. The key-exchange protocol
presented in [2] also uses such strong one-way functions. Our OT protocol can send an
O(log k)-bit secret, where k is the security parameter. We note that our OT protocols
only achieve quadratic security for adversary Bob, but they achieve perfect security
for adversary Alice. A corresponding situation can make the protocol appealing for
situation where Alice is run on a powerful server and Bob is run on a mobile device.

We consider a malicious adversary rather than semi-honest one. In the standard
setting, which requires a super-polynomial gap, a malicious OT can be constructed
from a semi-honest OT in a black-box way [17][14]. However, a loss of efficiency in the
construction is a very sensitive problem in the setting of quadratic security. Therefore,
in this paper, we directly construct a malicious OT protocol.

Our protocol is based on Merkle’s puzzles [20], the OT protocol in the bounded stor-
age model [6], a standard error-correcting technique, and the paradigm of transforming
an unconditionally secure protocol in the bounded storage model into a computationally
secure protocol based on strong one-way functions.

A similar transformation was presented for key-exchange protocols [2], and we con-
sider an application of this transformation to OT. First we construct an OT protocol in
the random oracle model based on that in the bounded storage model [6]. Second, we
replace the random oracle with a strong one-way permutation. Finally, we construct an
OT protocol with quadratic security based on strong one-way functions. One problem
in replacing a one-way permutation with one-way functions is that one-way functions
do not have the 1-to-1 property. Thus, one might consider that we could apply the same
technique as in [2] to our protocol. However, it does not work for OT in a simple way.
The reason stems from the fact that one of the two parties, Alice and Bob, in the OT
protocol can be an adversary. This situation is different from a key-exchange protocol,

in which Alice and Bob are always honest, and the adversary is a third party other than
them. In addition, we need to consider a malicious adversary rather than semi-honest
one. If we apply the technique in [2] to OT protocols in a straightforward way, then a
malicious adversary Bob can obtain both of the two secrets that Alice holds, and this
breaks the security of OT. Therefore, in order to circumvent this problem, we use an
error-correcting technique to our OT protocol. Due to this technique, our OT protocol
achieves the desired functionality and security.

2 Preliminaries

For an integer n, we denote by [n] the set {1, . . . , n}. We denote by Un the uniform
distribution over {0, 1}n. For ℓ ≤ n, we write

(
[n]
ℓ

)
to denote the set of all subsets T ⊆ [n]

with |T | = ℓ. We write f (n) = Õ(g(n)) if there exists some constant c such that f (n) =
O(g(n) logc(g(n))). An algorithm is called T (n)-bounded if the running time on n-bit
input is upper bounded by T (n). A function ϵ(n) is called negligible if for any constant
c > 0, ϵ(n) < 1/nc for sufficiently large n. We denote by negl(n) some negligible
function in n. We write p = poly(n) if p(·) is some polynomial in n. We say that ϵ is
bounded away from c if ϵ(n) ≤ c − 1/p(n) for some polynomial p for sufficiently large
n. We write x ◦ y to denote the concatenation operation of x and y.

2.1 Encoding Subsets, Min-Entropy and Strong Extractor

We encode sets into binary strings in the protocols. The following methods are used
in [3] and [6]. Using Lemma 1, we can encode

(
[n]
ℓ

)
by binary strings of length ⌈log

(
n
ℓ

)
⌉.

Lemma 1 ([4]). For every integer ℓ ≤ n there is a 1-to-1 mapping E :
(

[n]
ℓ

)
→
[(

n
ℓ

)]
such

that both E and E−1 can be computed in time polynomial in n.

Definition 1 (Dense encoding of subsets). For every integer ℓ ≤ n let E be the map-
ping from Lemma 1. We set tm =

⌊
2m/
(

n
ℓ

)⌋
where m is an integer such that m ≥ ⌈log

(
n
ℓ

)⌉
.

We define the mapping Em :
(

[n]
ℓ

)
× [tm]→ {0, 1}m as Em(S , i) = (i − 1)

(
n
ℓ

)
+ E(S) (every

subset S is mapped to tm different m bit strings).

Min-entropy is a variant of Shannon’s entropy. It measures the randomness of a
random variable or a probability distribution in the worst case. We use an extractor,
which is a function that generates uniformly random outputs from high min-entropy
distributions. These are also used in [3] and [6]. We review the definitions.

Definition 2 (Min-entropy). For a distribution X over a probability space Ω, the min-
entropy of X is defined as

H∞(X) = min
x∈Ω

log(1/ Pr[X = x]).

If H∞(X) ≥ k, X is called k-source.

Definition 3 (Statistical distance). Two distributions P and Q over a probability space
Ω are ϵ-close if for every A ⊆ Ω,∣∣∣∣ Pr

x←P
[x ∈ A] − Pr

x←Q
[x ∈ A]

∣∣∣∣ ≤ ϵ.
We write P

ϵ≡ Q if P and Q are ϵ-close. If ϵ = 0, we write P ≡ Q.

Definition 4 (Strong extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ϵ)-
strong extractor if for every k-source X over {0, 1}n, the distribution (Ext(X,Y),Y) is ϵ-
close to (Um,Y), where Y is the uniform distribution over {0, 1}d and Um is independent
of Y.

We note that in the standard extractor, which is not strong, the random variables
(Ext(X, Y),Y) and (Um, Y) are replaced by Ext(X,Y) and Um, respectively.

2.2 One-Way Functions and Hard-Core Predicates

Our OT protocol uses strong one-way functions, hard-core predicates, and hard predi-
cates. The following definitions are also used in [2].

Definition 5 (One-way function). An efficiently computable function f : {0, 1}∗ →
{0, 1}∗ is (T, ϵ) one-way if for any T (n)-bounded adversary A, every sufficiently large n,
and the uniform distribution Un,

Pr
x∈Un

[f (A(1n, f (x))) = f (x)] < ϵ(n).

We note that a standard one-way function is (nc, 1
nc) one-way for every constant

c > 1.

Definition 6 (Hard-core predicate). An efficiently computable function g : {0, 1}∗ →
{0, 1} is a (T, ϵ) hard-core predicate for f if for any T (n)-bounded adversary A and
sufficiently large n,

Pr
x∈Un,r∈Un

[A(f (x), r) = g(x, r)] <
1
2
+ ϵ(n).

Definition 7 (Hard predicate). An efficiently computable function P : {0, 1}∗ → {0, 1}
is a (T, ϵ) hard predicate if for any T (n)-bounded adversary A and sufficiently large n,

Pr
x∈Un

[A(f (x)) = P(x)] <
1
2
+ ϵ(n).

Definition 8 (Multi-source hard-core predicate). An efficiently computable function
H : {0, 1}∗ → {0, 1} is a (T, ϵ) multi-source hard-core predicate (MSHCP) for f if
there exist two polynomial t(·) and s(·) such that for any T (n)-bounded adversary A and
sufficiently large n,

Pr
x1,...,xt(n)∈Un,r∈Us(n)

[A(1n, f (x1), · · · , f (xt(n)), r) = H(x1 · · · xt(n), r)] <
1
2
+ ϵ(n).

We use Lemmas 2, 3 and 4 to prove the security of our protocols (OWP/OWFs Pro-
tocol). Using these lemmas, we can prove that the probability that Bob obtains both
of Alice’s two secrets is at most 1/poly(k), where k is the security parameter. We can
show that this probability is negl(k) by using dream Yao’s XOR lemma (Conjecture 1;
see also [2] and [10]). However, we do not know how to prove that this probability is
negl(k) without this conjecture.

Lemma 2 (Goldreich-Levin [9]). If f is a (T, ϵ) one-way function, then IP(x, r) =
〈x, r〉 is a (T ′, ϵ′) hard-core predicate for f with T ′(n) = T (n)·(ϵ4/n3) and ϵ′(n) = 4ϵ(n),
where 〈x, r〉 is the inner product modulo 2.

Lemma 3 (Yao’s XOR lemma). If P is a (T, ϵ) hard predicate and it is possible to
efficiently sample from distribution (Un, P(Un)), then for any µ(n) and t = poly(n),
P(t)(x1, . . . , xt) = ⊕t

i=1P(xi) is a (T ′, ϵ′) hard predicate with T ′ = T · (µ2/poly(n)) −
poly(n) and ϵ′ = (2ϵ)t + µ.

Conjecture 1 (Dream Yao’s XOR lemma [2]). If P is a (T, ϵ) hard predicate for some ϵ
that is bounded away from 1

2 and it is possible to efficiently sample from the distribution
(Un, P(Un)), then there exists a constant c < 1, a negligible function µ(·) and some
function η(·) that is bounded away from 1 such that for any t = poly(n), P(t)(x1, . . . , xt) =
⊕t

i=1P(xi) is a (T ′, ϵ′) hard predicate with T ′ = T · 2−o(n) and ϵ′ = 2cn · ηt + µ(2n).

Lemma 4 ([2]). For any δ < 1, every (2n(1−δ), 1
16) one-way function has a (T, ϵ) MSHCP

with the following T and ϵ:
- T = 2n(1−δ)/poly(n) ϵ = 1/poly(n) using µ = O(ϵ);
- T = 2n(1−δ−τ)/poly(n) ϵ = 2−τn/2 using µ = O(2−τn/2);
- T = 2n(1−δ)/2o(n) ϵ = negl(2n) assuming the dream XOR lemma.

We note that our OT protocol uses a collection F of (2n(1−δ), 1
16) one-way functions,

and F can be constructed from a collection of (2n(1−δ), 1
32) one-way functions and an

pairwise independent family of hash functions [2].

Definition 9 (Collection of one-way functions). A (T, ϵ) one-way collection F =∪
Fn of functions is a family of functions Fn = { fi : {0, 1}n → {0, 1}∗ | i ∈ In} such

that

Easy to sample and compute: There exist two PPT algorithms G and F such that
G(1n) outputs an index i ∈ In, where In ⊆ {0, 1}ℓ(n) and ℓ(n) is a polynomial, and for
x ∈ {0, 1}n, F(i, x) evaluates fi(x).

Hard to invert: For every T (n)-bounded adversary A and sufficiently large n,

Pr
i∈G(1n),x∈Un

[fi(A(1n, i, fi(x))) = fi(x)] < ϵ(n).

We say that F is almost 1-to-1 if the probability fi ∈ Fn is not 1-to-1 is bounded by
2−Ω(n).

Lemma 5 ([2]). If there exists a (T, ϵ) one-way function f : {0, 1}9n → {0, 1}∗ with
T ≥ 2

n
3 , ϵ ≤ 2−

n
3 , and T/ϵ ≥ 29n(1−δ) then there exists a (2n(1−10δ), 1

32) one-way collection
of functions F = ∪ Fn that is almost 1-to-1.

2.3 Oblivious Transfer

We now formally define “weak” oblivious transfer, where “weak” means that malicious
player’s (either Alice or Bob) computational resources are bounded. First we define
malicious strategies for Alice and Bob. In the definition below (Definitions 10 and 11),
the computational resources for Alice is weaker than those for Bob.

Definition 10 (Malicious strategy for Alice). A (malicious) strategy A∗ for Alice is an
Õ(k)-bounded interactive machine with inputs s0, s1 ∈ {0, 1}u(k), where k is the security
parameter and u(·) is a polynomial. That is, A∗ receives s0, s1, interacts with B, and in
each stage may compute the next message as any function of its inputs, its randomness,
and messages it received so far. The view of A∗ when interacting with B who holds input
c, denoted by view〈A

∗,B〉
A∗ (s0, s1; c), consists of its local output.

Definition 11 (d-bounded strategy for Bob). A d-bounded strategy B∗ for Bob is an
O(kd′)-bounded interactive machine with input c ∈ {0, 1} for any constant d′ < d. B∗

receives c, interacts with A, and in each stage may compute the next message as any
function of its inputs, its randomness, and messages it received so far. The view of B∗

when interacting with A who holds input s0 and s1, denoted by view〈A,B
∗〉

B∗ (s0, s1; c),
consists of its local output.

Definition 12 (C-consistent). Two pairs s = (s0, s1) and s′ = (s′0, s
′
1) are c-consistent

if sc = s′c.

Definition 13 (Oblivious transfer). A protocol 〈A, B〉 is a (d, ϵ)-secure oblivious trans-
fer (OT) protocol if for a security parameter k it is a protocol in which Alice inputs two
secrets s0, s1 ∈ {0, 1}u(k) and Bob inputs a choice bit c ∈ {0, 1}, and that satisfies:

Functionality: If Alice and Bob follow the protocol, then for any s0, s1 and c,

– The protocol does not abort with probability at least 1 − negl(k).
– If the protocol ends then Bob outputs sc with probability at least 1 − negl(k),

whereas Alice outputs nothing.

Security for Bob: The view of any strategy A∗ for Alice is independent of c. That is,
for every s0 and s1:{

view〈A,B
∗〉

A∗ (s0, s1; c) | c = 0
}
≡
{
view〈A,B

∗〉
A∗ (s0, s1; c) | c = 1

}
.

(d, ϵ)-Security for Alice: For every d-bounded strategy B∗ for Bob with input c, there
is a random variable C defined by the end of the setup stage, which is the stage that
Alice does not use her secrets (s0, s1) for computation, such that for every two pairs
s and s′ that are C-consistent,{

view〈A,B
∗〉

B∗ (s; c)
} ϵ≡ {view〈A,B

∗〉
B∗ (s′; c)

}
.

2.4 Interactive Hashing

Our OT protocols use an interactive hashing protocol, in which only Bob has input and
both Alice and Bob obtain the same output without Alice learning the input. Below we
give the definitions of interactive hashing and describe the protocol which was presented
in [6]. The protocol is called 4M-IH Protocol. The work [6] shows that the 4M-IH
Protocol satisfies the definitions of interactive hashing (Definitions 15 and 16). We note
that the 4M-IH protocol achieves security against unbounded adversaries.

Definition 14 (2k-to-1 hash functions). A hash function h : {0, 1}m → {0, 1}m−kis 2k-
to-1 if for every output of h there are exactly 2k pre-images. That is, |h−1(z)| = 2k for
every z ∈ {0, 1}m−k.

One simple way for constructing a 2k-to1 hash function is to take a permutation on
m-bit strings and omit the last k bits of its output.

Definition 15 (Interactive hashing). A protocol 〈A, B〉 is called an interactive hashing
protocol if it is an efficient protocol between Alice with no input and Bob with input
string W ∈ {0, 1}m. At the end of the protocol both Alice and Bob output a (succinct
representation of a) 2-to-1 function h : {0, 1}m → {0, 1}m−1 and two values W0,W1 ∈
{0, 1}m (in the dictionary order) such that h(W0) = h(W1) = h(W). Let e ∈ {0, 1} be such
that We = W. Furthermore, if the distribution of the string W1−e over the randomness of
the two parties is η -close to uniform, then the protocol is called η-uniform interactive
hashing (or simply uniform interactive hashing if η = 0).

Definition 16 (Security of interactive hashing). An interactive hashing protocol is se-
cure for B if for every unbounded deterministic strategy A∗, if h,W0,W1 are the outputs
of the protocol between an honest Bob with input W and A∗, then{

view〈A
∗,B〉

A∗ (W) |W = W0

}
≡
{
view〈A

∗,B〉
A∗ (W) |W = W1

}
.

An interactive hashing protocol is (s, ρ)-secure for A if for every S ⊆ {0, 1}m of size at
most 2s, every unbounded deterministic strategy B∗, if h,W0,W1 are the outputs of the
protocol, then

Pr[W0 ∈ S ∩W1 ∈ S] < ρ.

where the probability is taken over the randomness of A and B∗.
An interactive hashing protocol is (s, ρ)-secure if it is secure for B and (s, ρ)-secure

for A.

4M-IH Protocol presented in [6] uses an η-almost t-wise independent permutation
constructed in [13]. We describe the protocol below.

Definition 17 (η-almost t-wise independent permutation). An η-almost t-wise inde-
pendent permutation is a procedure that takes as input a seed of ℓ bits and outputs a
description of an efficiently computable permutation in S 2m , where S 2m is the family of
all permutations on m-bit string, with the property that a uniformly chosen seed induces
a distribution Πt,η on permutations such that for any t strings x1, · · · , xt ∈ {0, 1}m:

{π(x1), · · · , π(xt)}π←Πt,η

η≡ {π(x1), · · · , π(xt)}π←US m
,

where US m is the uniform distribution over S 2m .

4M-IH Protocol [6]

Common Input: parameters m and s.
Let v = s − log m.
A family Π of η-almost t-wise independent permutation π : {0, 1}m → {0, 1}m. Set

t = m and η = (1/2v)t.
A family G of 2-wise independent 2-1 hash functions g : {0, 1}m−v → {0, 1}m−v−1.
A family H of 2-1 hash functions h : {0, 1}m → {0, 1}m−1 defined as:

h(x)
de f
= π(x)1 ◦ · · · ◦ π(x)v ◦ g(π(x)v+1, · · · , π(x)m)

where π(x)i denotes the ith bit of π(x).
Input of Alice: ⊥.
Input of Bob: W ∈ {0, 1}m

− Alice randomly chooses π ∈ Π and sends π to Bob.
− Bob computes π(W) = z1, . . . , zm and sends π′(W) = z1, . . . , zv to Alice (let π′

denote π when truncated in its first v bits).
− Alice randomly chooses g ∈ G and sends g to Bob.
− Bob sends g(zv+1, . . . , zm) to Alice.
− Alice and Bob output W0,W1 such that

h(W0) = h(W1) = h(W).

Lemma 6 ([6]). For all s and m such that s ≥ log m + 2, 4M-IH Protocol is an
(s, 2−(m−s)O(log m))-secure η′-uniform interactive hashing protocol for
η′ = (2−(s−log m−1))m < 2−m. Furthermore, the protocol runs in time polynomial in m.

Due to lack of space, we omit security proof of Lemma 6 (see [6]).

2.5 Error-Correcting Codes

Our protocol based on one-way functions uses an error-correcting code.

Definition 18. An error-correcting code (Enc,Dec) consists of two functions Enc :
{0, 1}k → {0, 1}n and Dec : {0, 1}n → {0, 1}k such that for any x ∈ {0, 1}k, we have
Dec(Enc(x)) = x.

Lemma 7 ([19]). There exists an error-correcting code (Enc,Dec) such that Enc :
{0, 1}3n → {0, 1}4n and Dec : {0, 1}4n → {0, 1}3n, and for any x ∈ {0, 1}4n we have
Dec(Enc(x) + e) = x for any e ∈ {0, 1}4n with Hamming weight less than δn for some
constant δ. Furthermore, both Enc and Dec run in time polynomial in n.

3 The Protocol in the Random Oracle Model

3.1 Description of ROM Protocol

We describe our OT protocol in the random oracle model (ROM Protocol) below. The
protocol uses the following tools, a random permutation, a strong extractor, and an
interactive hashing protocol. We assume that k is a power of 2. For arbitrary k, we
can think log k as ⌈log k⌉ instead. In the following description, the secrets s0, s1 are of
length log k. We can choose arbitrary u = poly(log k) as the length of the secrets. If
s0, s1 ∈ {0, 1}u, we use ℓ = 1

2 · u2 · log2 k andA and B of size k
√

2ℓ instead.

ROM Protocol

For security parameter k, we use an oracle to compute a random permutation f : [k2]→
[k2] and a random predicate g : [k2] → {0, 1}. We set ℓ = 1

2 · log4 k and m = 10ℓ ·
⌈log(k log2 k)⌉.

Input of Alice: Two secrets s0, s1 ∈ {0, 1}log k.
Input of Bob: A choice bit c ∈ {0, 1}.
Setup stage:

− Alice chooses a set A of k2-bit random strings of size k log2 k, and queries the
oracle on these inputs and sends f (A) = { f (a) | a ∈ A} to Bob.

− Bob chooses a set B of k2-bit random strings of size k log2 k, and queries the
oracle on these inputs to obtain f (B). If | f (A) ∩ f (B)| < ℓ, then Bob aborts.
Otherwise, Bob randomly chooses ℓ common outputs c1, . . . , cℓ ∈ f (A)∩ f (B)
and sorts c1, . . . , cℓ by the dictionary order.
Bob randomly chooses p ∈ [tm] such that tm is as in Definition 1 and computes
W = Em(f (C), p), where f (C) = {c1, . . . , cℓ}.

− Alice and Bob run 4M-IH Protocol, where Bob’s input is W. Both Alice and
Bob interactively obtain h, W0,W1 such that h(W0) = h(W1) = h(W)
Alice computes two sets f (C0), f (C1) ⊆ f (A) such that W0 = Em(f (C0), p)
and W1 = Em(f (C1), p). If W0 or W1 is not a valid encoding, i.e., there is no
such f (C0) or f (C1), then abort.

− Bob chooses e such that We = W, and sends ê = e ⊕ c to Alice.
− Alice computes C0,C1, g(C0) and g(C1), where Ci = {x | f (x) ∈ f (Ci)} and

g(Ci) = {g(x) | x ∈ Ci} for i ∈ {0, 1}, and sorts the elements in the two sets g(C0)
and g(C1) by the dictionary order.

Transfer stage:
− For i = 0, 1, Alice chooses a seed Yi uniformly at random and computes Zi =

Ext(G(Ci), Yi) ⊕ si⊕ê, where G(Ci) is defined as G(Ci) = (g1 ⊕ · · · ⊕ g 1
2 log2 k) ◦

(g 1
2 log2 k+1 ⊕ · · · ⊕ glog2 k)◦ · · · ◦ (gℓ−(1

2 log2 k−1) ⊕ · · · ⊕ gℓ), where g1, . . . gℓ ∈ g(Ci).
Alice sends to Bob (Y0,Z0,Y1,Z1).

− Bob computes Ce = {x | f (x) ∈ f (C)} and G(Ce), and then sorts the elements in
G(Ce) by the dictionary order. Then Bob obtains sc = Ext(G(Ce),Ye) ⊕ Ze.

We note that if Alice and Bob follow ROM Protocol, then the protocol requires Õ(k)
running time for both of them. Using an efficient sorting algorithm, they can choose the
setsA and B, sort the sets f (A)∩ f (B), g(C0), g(C1), and G(Ce) in Õ(k) time, and query
to the random oracles in O(k) time. Alice and Bob can perform the interactive hashing
protocol and compute the strong extractor in polynomial time in the input length. Since
the input length of the interactive hashing is |W | = O(m) and that of the extractor is
O(|G(Ci)|) = O(log2 k), they can perform and compute in poly(log k) time. Therefore,
they can run ROM Protocol in total Õ(k) time.

Theorem 1. Given an oracle to a random function f : {0, 1}∗ → {0, 1}, there exists a
(2, ϵ) oblivious transfer protocol with ϵ = negl(k).

The proof of this theorem is given in the next section.

3.2 Functionality and Security Proofs

Lemma 8. ROM Protocol is a (2, ϵ) OT protocol with ϵ = negl(k) if the extractor is
(kE , ϵE)-strong for kE ≥ λ · log k and ϵE = negl(k), where λ is a constant, and the
interactive hashing protocol is (2−m)-uniform and (ψ, ρ)-secure for ψ ≤ m − ℓ and
ρ = negl(k).

Lemma 8 follows from Lemmas 9, 10, and 11.

Functionality of ROM Protocol

Lemma 9. For ROM Protocol that satisfies the parameters in Lemma 8, if Alice and
Bob follow the protocol with input s0, s1 ∈ {0, 1}log k and c ∈ {0, 1}, then the following
holds.

− The protocol does not abort with probability 1 − 2−Ω(ℓ);
− If the protocol does not abort, then Bob’s output is sc.

Proof. We first show that the protocol does not abort with high probability. The protocol
aborts only if | f (A)∩ f (B)| < ℓ or at least one of W0 and W1 is not a valid encoding. We
show that | f (A)∩ f (B)| ≥ ℓ with high probability. For every fixed f (A), since f (B) is a
set of random strings, the expected size of | f (A)∩ f (B)| is (k log2 k)2/k2 ≥ log4 k = 2ℓ.
By Chernoff bound, the probability of | f (A)∩ f (B)| < ℓ is at most 2−Ω(ℓ). Next we show
that the probability that at least one of W0 and W1 is not a valid encoding is small. Since
We was chosen by Bob, We is a valid encoding. By the property of interactive hashing,
W1−e is (2−m)-close to the uniform distribution over {0, 1}m. By Lemma 3.3 in [6], the
probability that a uniformly random string in {0, 1}m is not a valid encoding is at most
| f (A)| · 2−m ≤

(
k2

ℓ

)
· 2−m ≤ 2−ℓ−1. Therefore, the probability that the protocol aborts is

bounded by 2−Ω(ℓ) + 2−m + 2−ℓ−1 ≤ 2−Ω(ℓ).
We show that if the protocol does not abort, then Bob outputs sc. Since Bob knows

Ce, he can always compute Ext(g(Ce),Ye) and subsequently use it to decrypt the value
Ze. Then we have

Ext(G(Ce),Ye) ⊕ Ze = Ext(G(Ce),Ye) ⊕ (se⊕ê ⊕ Ext(G(Ce), Ye))
= se⊕ê

= sc.

Security for Bob

Lemma 10. ROM Protocol that satisfies the parameters in Lemma 8 is secure for Bob.

Proof. We show that the view of any strategy A∗ for Alice is independent of c. Fix the
randomness of A∗. We show a bijection between pairs of (B, c) and (B′, 1− c), where B
and B′ are chosen randomly by honest Bob and c is his input. That is, we show that, for
each pair (B, c) that is consistent with the view of A∗, there exists a unique pair (B′, 1−c)
such that (B′, 1 − c) is consistent with the same view A∗. There are two possibilities for
a view of A∗:

− The protocol aborts before the step in which Bob sends the value ê = c ⊕ e to
Alice. In this case, the view of A∗ is totally independent of c. We can map every
consistent B to itself B′ = B. Clearly (B, c) and (B′, 1 − c) are consistent with the
view of A∗.
− Alice receives the message ê = c ⊕ e sent by Bob. Let (B, c) be a pair consistent
with the view of A∗. Then, f (B) is a random set such that f (C) ⊆ f (A) ∩ f (B)
and We = Em(f (C), p). Since f is a permutation, B is also a random set such
that C ⊆ A ∩ B. Since the protocol has not aborted, it follows from the property
of the interactive hashing that there is a unique random set C′ such that W1−e =

Em(f (C′), p). If we set B′ to be B′ = B\C ∪ C′, then (B′, 1 − c) is consistent with
the view of A∗. Therefore we get a bijection.

Since there is a bijection between pairs (B, c) and (B′, 1 − c), the view of A∗ for
Alice is independent of c.

Security for Alice

Lemma 11. ROM Protocol that satisfies the parameters in Lemma 8 is (2, ϵ)-secure for
Alice for ϵ = negl(k).

Proof. Fix a 2-bounded strategy B∗ with an input c. We need to show that there exists
a random variable C defined by the end of Setup stage such that for every two pairs of
secrets s = (s0, s1) and s′ = (s′0, s

′
1) that are C-consistent, the view of B∗ when the input

of Alice is s is ϵ-close to that when the input is s′. In ROM Protocol, the secrets s0, s1 are
only involved in Transfer stage, and they are sent to Bob as Zi = Ext(G(Ci),Yi) ⊕ si for
i ∈ {0, 1}. Thus, it is sufficient to show that Z1−C is close to the uniform distribution from
the view of B∗. To show this, we prove that G(C1−C) has enough entropy from the view
of B∗. From the security of the interactive hashing, with probability at least 1 − ρ, B∗

obtain no information about G(C1−C) in the interactive hashing. Let assume that such
an event happens. Without loss of generality, we assume that B∗ makes at most k2/3
different oracle queries. The first bit of G(C1−C) is g1 ⊕ · · · ⊕ g 1

2 log2 k. If B∗ did not query
the oracle for at least one of g1, . . . , g 1

2 log2 k, then the first bit of G(C1−C) is uniformly
distributed, since g j is an output of a random predicate g. We bound the probability that
B∗ makes all the elements g1, . . . , g 1

2 log2 k. Suppose g j = g(x j) for j ∈ [12 log2 k
]
. Let X j

be an event that B∗ queries x j to the oracle. Since g is a random predicate that maps k2

bits to 1 bit, we have that Pr[X j] ≤ 1/k2 and thus Pr[
∪

j X j] ≤ log2 k/(2k2). This means
that the probability that the first bit of G(C1−C) is not uniformly distributed is at most
log2 k/(2k2). The same argument holds for any other bit of G(C1−C). For i ∈ [log k], let
Yi be a random variable that takes 1 if an event

∪
j Xi·(1

2 log2 k)+ j happens and 0 otherwise.
Namely, Yi = 0 means that the i-th bit of G(C1−C) is uniformly distributed. Then, the
probability that G(C1−C) is a (λ · log k)-source is at least Pr[

∑
i Yi ≤ (1 − λ) log k].

By Chernoff bound, since E[
∑

i Yi] = log2 k · E[Y1] ≤ ℓ/k2, we have Pr[
∑

i Yi > (1 −
λ) log k] ≤ 2−Ω(log2 k). Thus, with probability at least 1−2−Ω(log2 k),G(C1−C) is a (λ·log k)-
source, and hence Ext(G(C1−C),Y1−C) is ϵE-close to the uniform distribution. Therefore,
the statistical distance between the view of B∗ when the input of Alice is s and that when
s′ is at most 2(ρ + ϵE + 2−Ω(log2 k)) = negl(k).

Replacing Random Permutation with Random Function. We can replace a ran-
dom permutation with a random function in ROM Protocol using the same technique
described in the proof of Theorem 2 in [12]. Thus, Theorem 1 follows from Lemma 8.

4 The Protocol from One-Way Permutations

4.1 Description of OWP Protocol

We construct a protocol with quadratic security based on a one-way permutation. We
consider to replace the random oracle with a one-way permutation in ROM Protocol.
Note that our protocol relies on a (T, ϵ) one-way permutation with T (n) ≥ 2log k. We
assume that k is a power of 2. For simplicity, in the following description, the secrets
s0, s1 are of length log k. For arbitrary u = poly(log k), we use s0, s1 ∈ {0, 1}u and ℓ = t·u
instead.

OWP Protocol

For a security parameter k, we use a one-way permutation f : {0, 1}2 log k → {0, 1}2 log k

for which H is a (T, ϵH) MSHCP with T = 22(1−δ)·log k for a positive constant δ < 1. We
set ℓ = t · log2 k and m = 10ℓ · ⌈log(k

√
2ℓ)⌉, where t = t(log k) is some polynomial for

H as in Definition 8. Also let s = s(log k) be some polynomial for H as in Definition 8.

Input of Alice: Two secrets s0, s1 ∈ {0, 1}log k.
Input of Bob: A choice bit c ∈ {0, 1}.
Setup stage:

− Alice chooses a set A of 2 log k-bit random strings of size
⌈
k
√

2ℓ
⌉

and a set
Ri of s-bit random strings of size log2 k for i = 0, 1, and computes f (A) =
{ f (a) | a ∈ A} and sends them to Bob.

− Bob chooses a setB of 2 log k-bit random strings of size
⌈
k
√

2ℓ
⌉
, and computes

f (B) = { f (b) | b ∈ B}. If | f (A) ∩ f (B)| < ℓ, then Bob aborts. Otherwise, Bob
randomly chooses ℓ common outputs c1, . . . , cℓ ∈ f (A) ∩ f (B).
Bob randomly chooses p ∈ [tm] such that tm is as in Definition 1 and computes
W = Em(f (C), p), where f (C) = {c1, . . . , cℓ}.

− Alice and Bob run 4M-IH Protocol, where Bob’s input is W. Both Alice and
Bob interactively obtain h, W0,W1 such that h(W0) = h(W1) = h(W).
Alice computes two sets f (C0), f (C1) ⊆ f (A) such that W0 = Em(f (C0), p)
and W1 = Em(f (C1), p). If W0 or W1 is not a valid encoding, then abort.

− Bob chooses e such that We = W, and sends ê = e ⊕ c to Alice.
− For i = 0, 1, Alice computesCi andH(Ci,Ri), whereCi = {x | f (x) ∈ f (Ci)} and
H(Ci,Ri) = H(x1, . . . , xt, r1)◦H(xt+1, . . . , x2t, r2)◦· · ·◦H(xℓ−t+1), . . . , xℓ, rlog2 k),
where x1, . . . xℓ ∈ Ci, r1, . . . rlog2 k ∈ Ri. Alice sorts the elements in H(C0,R0)
andH(C1,R1) by the dictionary order.

Transfer stage:
− For i = 0, 1, Alice chooses a seed Yi uniformly at random and computes Zi =

Ext(H(Ci, ri),Yi) ⊕ si⊕ê. Alice sends to Bob (Y0,Z0,Y1,Z1).

− Bob computes Ce = {x | f (x) ∈ f (C)} andH(Ce, re), and then sorts the elements
inH(Ce, re) by the dictionary order. Then Bob obtains sc = Ext(H(Ce, re),Ye)⊕
Zi.

We note that if Alice and Bob follow OWP Protocol, then they can run it in total
Õ(k) time. This follows from a similar argument as ROM Protocol.

Theorem 2. If there exists a (22 log k(1−δ), 1
16) one-way permutation for δ < 1

2 , then there
exists a (d, ϵ)-secure oblivious transfer protocol for the following d and ϵ:

- d = 2 · (1 − δ) ϵ = 1/logc k for any constant c;
- d = 2 · (1 − δ − τ) ϵ = k−τ for any τ < 1 − δ;
- d = 2 · (1 − δ) ϵ = negl(k) assuming the dream XOR lemma.

4.2 Functionality and Security Proofs

We first show the following lemma.

Lemma 12. OWP Protocol is a (2, ϵ) OT protocol with ϵ = 2ϵH · log2 k + negl(k) if H
is (T, ϵH) MSHCP, the extractor is (kE , ϵE)-strong for kE ≥ λ · log2 k and ϵE = negl(k),
where λ is a constant, and the interactive hashing protocol is (2−m)-uniform and (ψ, ρ)-
secure for ψ ≤ m − ℓ, ρ = negl(k).

Theorem 2 can be proven by this lemma and Lemma 4. Lemma 12 follows from
Lemmas 13, 14, and 15.

Functionality of OWP Protocol

Lemma 13. For OWP Protocol that satisfies in Lemma 12, if Alice and Bob follow the
protocol with input s0, s1 ∈ {0, 1}log k and c ∈ {0, 1}, then the following holds.

− The protocol does not abort with probability 1 − 2−Ω(ℓ);
− If the protocol does not abort, then Bob’s output is sc.

We can show this lemma by almost the same argument as the proof of Lemma 10.
Hence we omit the proof.

Security for Bob

Lemma 14. OWP Protocol that satisfies the parameters in Lemma 12 is secure for Bob.

Since the proof is almost the same as Lemma 9, we omit the proof.

Security for Alice

Lemma 15. OWP Protocol that satisfies the parameters in Lemma 12 is (2, ϵ)-secure
for Alice with ϵ = 2ϵH · log2 k + negl(k).

Proof. Fix a 2-bounded strategy B∗ with an input c. We need to show that there exists
a random variable C defined by the end of Setup stage such that for every two pairs of
secrets s = (s0, s1) and s′ = (s′0, s

′
1) that are C-consistent, the view of B∗ when the input

of Alice is s is ϵ-close to that when the input is s′. By the same reason as in Lemma 11,
it is sufficient to show that H(C1−C ,R1−C) has enough entropy from the view of B∗. In
the case of ROM Protocol (Lemma 11), we show that G(C1−C) has enough entropy. The
difference is that, in OWP Protocol, H(C1−C ,R1−C) consists of the outputs of MSHCP,
while in ROM Protocol, G(C1−C) consists of the outputs of the random predicate g.
Since H is (T, ϵH) MSHCP and |H(C1−C ,R1−C)| = log2 k, the difference is at most
ϵH · log2 k. Therefore, by the same argument as in the proof of Lemma 11, the statistical
distance between the view of B∗ when the input of Alice is s and that when s′ is at most
2(ρ + ϵE + 2−Ω(log2 k) + ϵH · log2 k) ≤ ϵ.

5 The Protocol from One-Way Functions

5.1 Description of OWFs Protocol

We describe our OT protocol based on one-way functions (OWFs Protocol) below. The
protocol uses the following tools, a collection of one-way functions, an interactive hash-
ing protocol, a strong extractor, and an error-correcting code.

In OWFs Protocol, Alice first randomly chooses two random strings σ0 and σ1,
which are the same length as s0 and s1. Then Alice encodes σ0, σ1 to σ′0σ

′
1 using

an error-correcting code. Alice and Bob run the basic protocol several times. In the one
basic protocol, they run setup stage several times. Bob’s output of the t’th basic protocol
is the t’th bit of the encoded string σ′c. If Bob collects almost of all outputs of the basic
protocols, then Bob can decode the strings σ′c to σc which Alice made, and by using it,
get Alice’s input sc.

For simplicity, we assume that k is a power of 2. In OWFs Protocol, for simple
description, we set the length of the secrets (s0 and s1) with log2 k while that of the
previous ROM/OWP Protocol with log k. We can choose arbitrary u = poly(log k) as
the length of the secrets.

OWFs Protocol

For a security parameter k, we use a collection F = ∪ F(2 log k) of one-way functions,
4M-IH Protocol with input length m = 10ℓ · ⌈log k

√
2ℓ
⌉
, a randomness extractor, and

an error-correcting code (Enc,Dec) with Enc : {0, 1}u → {0, 1}u′ , where ℓ = 1
2 · log2 k,

u = log2 k, and u′ = 4
3 u.

Input of Alice: Two secrets s0, s1 ∈ {0, 1}u.
Input of Bob: A choice bit c ∈ {0, 1}.

Encoding stage:
− Alice chooses two random stringsσ0, σ1 ∈ {0, 1}u, and computesσ′0 = Enc(σ0)

and σ′1 = Enc(σ1).
For each t ∈ [u′], Alice and Bob run the following basic protocol.

The basic protocol for t :
Alice and Bob run Setup stage for each s ∈ [log k], and then run Combining stage.

Setup stage for s :
− Alice chooses a set A of 2 log k-bit random strings of size k log k, two

random strings r0, r1 ∈ {0, 1}ℓ, and fi ∈ F(2 log k). Alice computes fi(A) =
{ fi(x) | x ∈ A} and sends it to Bob.

− Bob chooses a set B of 2 log k-bit random strings of size k log k, and com-
putes fi(B) = { fi(x) | x ∈ B}. If | fi(A) ∩ fi(B)| < ℓ, then Bob aborts. Other-
wise, Bob randomly chooses ℓ common outputs c1, . . . , cℓ ∈ f (A) ∩ f (B).
Bob randomly chooses p ∈ [tm] such that tm is as in Definition 1 and
computes W = Em(fi(C), p), where fi(C) = {c1, . . . , cℓ}.

− Alice and Bob run the 4M-IH Protocol, where Bob’s input is W. Both Alice
and Bob interactively obtain h, W0,W1 such that h(W0) = h(W1) = h(W).
Alice computes two sets f (C0), f (C1) ⊆ f (A) such that W0 = Em(f (C0), p)
and W1 = Em(f (C1), p). If W0 or W1 is not a valid encoding, then abort.

− Bob chooses e such that We = W, and sends ês = e ⊕ c to Alice.
− Alice computes C0,C1 and sorts the elements by the dictionary order,

where C j = {x | fi(x) ∈ f (C j)} for j ∈ {0, 1}, Alice randomly chooses
two indices i0, i1 ∈ [ℓ] such that ci0 ∈ C0 \ C1 and ci1 ∈ C1 \ C0, computes
vs

0 = IP(ci0 , r0) and vs
1 = IP(ci1 , r1) and sends (i0, i1) to Bob.

− Bob computes vs
ês
= IP(cês , rês).

Combining stage:
− Alice computes V t

0 = v1
ê1
⊕v2

ê2
⊕· · ·⊕vlog k

êlog k
, V t

1 = v1
(1−ê1)⊕v2

(1−ê2)⊕· · ·⊕vlog k
(1−êlog k).

− Bob computes V t
c = v1

c ⊕ v2
c ⊕ · · · ⊕ vlog k

c .
Transfer stage:

− For i = 0, 1, Alice computes Vi = (V1
i ◦ V2

i ◦ · · · ◦ Vu′
i) and V ′i = Vi ⊕ σ′i , and

chooses a random seed Yi and computes Zi = Ext(σi, Yi)⊕ si. Then Alice sends
(V ′0,Z0,V ′1,Z1) to Bob.

− Bob computes σ̂′c = V ′c ⊕ (V1
c ◦ V2

c ◦ · · · ◦ V log k
c) and σc = Dec(σ̂′c), and obtains

sc = Ext(σc,Yc) ⊕ Zc.

We note that if Alice and Bob follow OWFs Protocol, then the protocol requires
Õ(k) running time for them. In Encoding stage, Alice can choose strings and encode
them in poly(u) = poly(log k) time. In Setup stage for each Basic protocol, Alice and
Bob can choose the sets A and B, sort the sets fi(A) ∩ fi(B), choose elements i0 and
i1 , and compute vs

0, vs
1 and vs

ês
in Õ(k). Alice and Bob can perform 4M-IH Protocol

in polynomial time in the input length, that is, poly(log k) time. Since, they run Setup
stage s = log k times and compute V t

0,Z
t
1 and Zt

c in Combining stage in O(s) = O(log k),
they perform the basic protocol in total Õ(k) time. They can perform Transfer stage in
poly(log k) time. Therefore, they can run OWFs Protocol in total Õ(k) time.

Theorem 3. For any δ < 1/10, If there exists a (T, ϵ) one-way functions with T ≥
22 log k/3, ϵ ≤ 2−(2 log k/3), and T/ϵ ≥ 218 log k(1−δ), then there exists a (d, ϵ)-secure oblivious
transfer protocol for the following d and ϵ:

- d = 2 · (1 − 10δ) ϵ = 1/logc k for any constant c;
- d = 2 · (1 − 10δ − τ) ϵ = k−τ for any τ < 1 − δ;
- d = 2 · (1 − 10δ) ϵ = negl(k) assuming the dream XOR lemma.

5.2 Functionality and Security Proofs

We first show the following lemma:

Lemma 16. OWFs Protocol is a (2, ϵ) OT protocol with ϵ = ϵF · poly(log k) + negl(k)
if F is a (T, ϵF) one-way collection of function that is almost 1-to-1, the extractor is
(kE , ϵE)-strong for kE ≥ λ · log2 k and ϵE = negl(k), where λ is a constant, the interactive
hashing protocol is (2−m)-uniform and (ψ, ρ)-secure for ψ ≤ m − ℓ, ρ = negl(k), and the
error-correcting code is as presented in Lemma 7.

Theorem 3 can be proven by this lemma and Lemma 5. Lemma 16 follows from
Lemmas 17, 18, 19.

Functionality of OWFs protocol

Lemma 17. For OWFs Protocol that satisfies in Lemma 16, if Alice and Bob follow the
protocol with input s0, s1 ∈ {0, 1}log k and c ∈ {0, 1}, then the following holds.

− The protocol does not abort with probability 1 − 2−Ω(ℓ);
− If the protocol does not abort, then Bob’s output is sc with probability 1−negl(k).

Proof. The protocol aborts only in running Setup stage of the basic protocol. Since
OWFs Protocol performs Setup stage poly(log k) times, it follows from the same argu-
ment as in the case of ROM/OWP Protocol that the probability that the protocol aborts
is negl(k).

Next we show that, if the protocol does not abort, the output of Bob is sc with
probability at least 1−negl(k). Bob can output sc if he can compute Ext(σc,Yc) correctly,
which happens if Dec(σ̂′c) = σ′c. For each t ∈ [u′], the probability that the value of V t

c
that Bob holds differs from that of Alice is at most (log k)/k2. Thus, the expected number
of errors contained in σ̂′c is (log3 k)/k2. Since Dec can correct Ω(log2 k) errors in σ̂′c, we
can show by using Chernoff bound that the probability that Dec(σ̂′c) = σ′c is at least
1 − negl(k).

Security for Bob

Lemma 18. OWFs Protocol that satisfies the parameters in Lemma 16 is secure for
Bob.

Proof. Bob uses his secret c only in the iteration of Setup stage. By the same argument
as in ROM/OWP Protocol, Alice has no information about c in the information theoretic
sense. Therefore, the lemma follows.

Security for Alice

Lemma 19. OWFs Protocol that satisfies the parameters in Lemma 16 is (2, ϵ)-secure
for Alice with ϵ = 2ϵF · poly(log k) + negl(k)

Proof. For a 2-bounded strategy B∗ with an input c, we need to show that there exists
a random variable C defined by the end of Setup stage such that for every two pairs
of secrets s = (s0, s1) and s′ = (s′0, s

′
1) that are C-consistent, the view of B∗ when the

input of Alice is s is ϵ-close to that when the input is s′. As in the case of ROM/OWP
Protocol, it is sufficient to show that the input to the extractor, σ1−C , has enough entropy.

First we show that the probability that Bob can obtain some bit of both σ′C and σ′1−C
is small. To obtain a bit of both σ′C and σ′1−C , he need to break either the interactive
hashing or the one-wayness of fi for all log k iterations of Setup stage. That probability
is at most (1

2 + ϵF + ρ)poly(log k) ≤ ϵF · poly(log k). Therefore, the probability that Bob
obtains some bit of both σ′C and σ′1−C is at most ϵF · poly(log k).

Thus, if Bob obtains σ′C correctly, then he performs the basic protocol with input C
at least 1

2 u′ times out of u′ times. This means that he performs the basic protocol with
input 1−C at most 1

2 u′ times. By a similar argument as is the proof of Lemma 11, σ1−C

has entropy ≥ 3
4 u. Hence the entropy of σ′C is at least 3

4 u − 1
2 u′ = 1

12 u = Ω(log2 k).
Therefore, the statistical distance between the view of B∗ when the input of Alice is

s and that when s′ is at most 2(ϵF · poly(log k) + ϵE) ≤ ϵ.

6 Conclusions and Open Problems

We have proposed an OT protocol with quadratic security from strong one-way func-
tions. In our OT protocol (OWFs Protocol), Bob obtains the two secret with probability
1/poly(k). We do not know the way of improving this probability to negl(k) without
dream Yao’s XOR lemma. In order to do this, we believe that we must use other tech-
niques: other error-correcting codes, extractors. Thus, these techniques may improve
probability negl(k) and remain hardness.

Another issue is on optimality. In [1], it is shown that the key-exchange protocol
with quadratic security is optimal in the random oracle model. Therefore, it may be
able to prove that an OT protocol with quadratic security is optimal in the random
oracle model.

Acknowledgement

We are very grateful to Dr. Claudio Orlandi for helpful suggestions and comments. We
would also like to thank the anonymous referees for very valuable comments.

References

1. B. Barak and M. Mahmoody-Ghidary. Merkle Puzzles Are Optimal −An O(n2)-query Attack
on Any Key Exchange from a Random Oracle. Proceedings of CRYPTO 2009, pages 374–
390, 2009.

2. E. Biham, Y. J. Goren, and Y. Ishai. Basing Weak Public-Key Cryptography on Strong One-
Way Functions. Proceedings of TCC 2008, pages 55–72, 2008.

3. C. Cachin, C. Crépeau, and J. Marcil. Oblivious Transfer with a Memory-Bounded Receiver.
Proceedings of FOCS 1998, pages 493–502, 1998.

4. T. M. Cover. Enumerative Source Encoding. IEEE Transaction on Information Theory,
pages 73–77, 1973.

5. C. Crépeau. Equivalence between Two Flavours of Oblivious Transfers. Proceedings of
CRYPTO 1987, pages 350–354, 1987.

6. Y. Z. Ding, D. Harnik, A. Rosen, and R. Shaltiel. Constant-Round Oblivious Transfer in the
Bounded Storage Model. Proceedings of TCC 2004, pages 446–472, 2004.

7. S. Even, O. Goldreich, and A. Lempel. A Randomized Protocol for Signing Contracts.
Communications of the ACM, pages 637–647, 1985.

8. Y. Gertner, S. Kannan, and T. Malkin. The Relationship between Public Key Encryption and
Oblivious Transfer. Proceedings of FCCS 2000, pages 325–335, 2000.

9. O. Goldreich. Foundation of Cryptography Basic Tools. Cambridge University Press, 2001.
10. O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR lemma. Technical Report TR95-

50, 1995.
11. S. Goldreich, O. Micali and A. Wigderson. How to Play Any Mental Game - A Completeness

Theorem for Protocols with Honest Majority. In 19th ACM Symposium on the Theory of
Computing, pages 218–229, 1987.

12. Y. Goren. Basing Weak Public-Key Cryptography on Strong One-Way Functions. M.Sc.
Thesis, Technion, 2006.

13. W. T. Gowers. An Almost m-wise Independent Random Permutation of the Cube. Combi-
natorics, Probability and Computing, pages 119–130, 1996.

14. I. Haitner. Semi-honest to Malicious Oblivious Transfer - The Black-Box Way. Proceedings
of TCC 2008, pages 412–426, 2008.

15. R. Impagliazzo and M. Ruby. One-Way Functions Are Essential for Complexity-Based
Cryptography. Proceedings of FOCS 1989, pages 230–235, 1989.

16. R. Impagliazzo and S. Rudich. Limits on the Provable Consequences of One-Way Permuta-
tions. Proceedings of STOC 1989, pages 44–61, 1989.

17. Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank. Black-Box Constructions for Secure
Computation. Proceedings of STOC 2006, pages 531–540, 2006.

18. J. Kilian. Founding Cryptography on Oblivious Transfer. In 20th ACM Symposium on the
Theory of Computing, pages 20–31, 1988.

19. F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-
Holland, 1977.

20. R. C. Merkle. Secure Communications over Insecure Channels. Communications of the
ACM, pages 294–299, 1978.

21. M. Naor and B. Pinkas. Efficient Oblivious Transfer Protocols. Proceedings of SODA 2001,
pages 448–457, 2001.

22. M. Rabin. How to Exchange Secrets by Oblivious Transfer. Technical Report TR-81, 1981.
23. O. Reingold, L. Trevisan, and S. P. Vadhan. Notions of Reducibility between Cryptographic

Primitives. Proceedings of TCC 2004, pages 1–20, 2004.
24. A. C. Yao. How to Generate and Exchange Secrets. In 27th IEEE Symposium on Theory of

Computing, pages 218–229, 1986.

	Weak Oblivious Transfer from Strong One-Way Functions

