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PAPER
Repeated Games for Generating Randomness in Encryption

Kenji YASUNAGA†a), Member and Kosuke YUZAWA††, Nonmember

SUMMARY In encryption schemes, the sender may not generate ran-
domness properly if generating randomness is costly, and the sender is not
concerned about the security of a message. The problem was studied by
the first author (2016), and was formalized in a game-theoretic framework.
In this work, we construct an encryption scheme with an optimal round
complexity on the basis of the mechanism of repeated games.
key words: game theory, repeated game, randomness, encryption

1. Introduction

Randomness is essential for many cryptographic primitives.
In practice, generating randomness is a complex and diffi-
cult task. There are many cryptographic failures [1]–[8].

Even though users can access to a good randomness
source, they may not use it if generating randomness itself
is a costly task. Such a situation arises naturally for energy-
saving devices. In encryption schemes, the sender may not
generate randomness properly if she is not concerned about
the security of a message to be encrypted. Namely, the
sender may rationally decide not to generate costly random-
ness.

The problem of such rationality was studied in [9] for
public-key encryption schemes. For the first step to un-
derstand the behavior of such rational parties, the author
considered a simple setting in which rational senders and
receivers can choose either good randomness and bad ran-
domness. Good one is a truly random string, but is costly.
Bad one is a fixed string, e.g., the all-zero string, and can
be generated without cost. The author gave both positive
and negative results. The study reveals the importance of
the information given to the sender and the receiver. Secure
encryption schemes were provided depending on situations.
For the most basic situation, in which the receiver does not
know whether a message to be sent is valuable to him or
not, a two-round scheme is constructed based on any secure
public-key encryption scheme. In a more difficult situation,
in which the receiver may know the value of a message to
him, the two-round scheme is not secure. Then, the author
presented a three-round scheme with a peculiar final step,
where the receiver encrypts a recovered message with the

Manuscript received September 11, 2017.
Manuscript revised December 1, 2017.
†The author is with the Institute of Science and Engineering,

Kanazawa University, Kanazawa-shi, 920-1192 Japan.
††The author was a student at Kanazawa University, Kanazawa-

shi, 920-1192 Japan.
a) E-mail: yasunaga@se.kanazawa-u.ac.jp

DOI: 10.1587/transfun.E101.A.697

sender’s public key and makes it public.

1.1 This Work

We study the problem of rational behavior for generating
randomness in encryption by treating the security game as
a repeated game. In public-key encryption schemes, after
generating a pair of public and secret keys, messages are
assumed to be encrypted repeatedly. Thus, it is natural to
formalize the security game of encryption schemes as a re-
peated game. We present a round-efficient scheme based
on a mechanism of repeated games. Specifically, we con-
struct a secure two-round scheme in the setting for which
a three-round scheme was presented in [9]. The scheme
is the first two-round scheme in the setting where the re-
ceiver may know the value of a message to be sent. Since
non-interactive schemes cannot be secure [9], the scheme
achieves the optimal round complexity.

1.2 Our Model

Our security model is based on the study of [9]. We de-
fine a variant of chosen plaintext attack (CPA) game of en-
cryption schemes. The game consists of the key generation
phase, which is conducted only once, and the encryption
phase, which is played repeatedly. In the encryption phase,
an adversary, on input public keys, chooses two challenge
messages, and, given a ciphertext, tries to guess which of
the two messages was encrypted. The sender and the re-
ceiver are rational players, and have their own utility func-
tions. The values of utilities are determined by the outcome
of the game. Each rational player needs to choose either
good or bad randomness before performing probabilistic al-
gorithms. Roughly speaking, an encryption scheme is said
to be secure if the prescribed strategy for rational players
is a Nash equilibrium, and a message is securely encrypted
in every encryption phase when rational players follow the
prescribed strategy.

In this work, we model the above repeated game as an
infinitely repeated game. More concretely, we consider an
infinite sequence of adversaries A1, A2, . . . such that Ai plays
only at the i-th encryption phase, called a stage game. The i-
th stage game is conducted between the sender, the receiver,
and Ai. Since Ai cannot communicate with other adver-
saries, we can avoid the problem of using computationally-
secure primitives an exponential number of times. Although
the message security is considered for every stage game, ra-
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tional players are assumed to calculate their utilities as a
total of infinitely-many stage games. Thus, we can utilize a
mechanism of infinitely repeated games in the framework of
CPA games of encryption schemes.

1.3 Related Work

There are many studies using game-theoretic analysis for
cryptographic primitives, including secret sharing [10]–
[19], two-party protocols [20]–[22], public-key encryp-
tion [9], leader election [23], [24], Byzantine agree-
ment [25], delegation of computation [26]–[30], and pro-
tocol design [31], [32]. Among them, repeated games have
been introduced only in rational secret sharing [33]. This
work shows that the mechanism of repeated games is ef-
fective for reducing the round complexity of encryption
schemes.

Halpern and Pass [34] introduced the framework of ma-
chine games for incorporating the cost of computation, in-
cluding the cost of randomization, in utility functions. They
showed that if randomization is free, there always exists a
Nash equilibrium in machine games. In this work, we em-
ploy a simpler framework specific to encryption schemes,
and show that a Nash equilibrium strategy satisfies CPA se-
curity.

Halpern et al. [35], [36] used cryptographic primi-
tives for finding equilibria in repeated games played by
computationally-bounded players.

Halpin and Naor [37] proposed a method for generating
randomness by human game play.

1.4 Notations

A function ε(·) is called negligible if for any constant c,
ε(λ) < 1/λc for every sufficiently large λ ∈ N. For two fam-
ilies of random variable X = {Xn}n∈N and Y = {Yn}n∈N, we
say X and Y are computationally indistinguishable, denoted
by X ≈c Y , if for every probabilistic polynomial-time dis-
tinguisher D, there is a negligible function ε(·) such that
|Pr[D(Xn) = 1] − Pr[D(Yn) = 1]| ≤ ε(n) for every suffi-
ciently large n. For a probabilistic algorithm A, we denote
by A(x; r) the output of A running on input x with random-
ness r.

2. Repeated Games for Public-Key Encryption

We assume that both the sender and the receiver are rational
players. Each player has a set of valuable messages, and
prefers a message to be sent confidentially if it is valuable to
the player. We consider the cost of generating randomness
for algorithms. Each player can choose one of the two types
of randomness, good randomness and bad randomness. The
former is a truly random string but costly to generate. The
latter is the all-zero string and can be generated without cost.

We model the interactions between the sender and the
receiver as a game. The game is a variant of the chosen
plaintext attack (CPA) game of encryption schemes. First,

the key generation phase is conducted by the sender and
the receiver individually. Then, the guessing game is con-
ducted between the sender, the receiver, and an adversary.
The adversary chooses two messages m0 and m1. A ran-
domly chosen message is encrypted by the interaction be-
tween the sender and the receiver. Given the transcript of
the interaction, the adversary tries to guess which message
was encrypted. The guessing game is played repeatedly. We
assume that the repeated game is perfect monitoring, in the
sense that the players can observe each other’s actions af-
ter each guessing game ends. Let MS and MR be the sets
of valuable messages for the sender and the receiver, re-
spectively. In each guessing game, the adversary chooses
two messages so that both of them are in eitherMS \ MR,
MR \ MS , orMS ∩MR. Let pS , pR, pS R denote the proba-
bilities that the chosen messages are inMS \MR,MR \MS ,
and MS ∩ MR, respectively. It holds that pS , pR, pS R ≥ 0
and pS + pR + pS R = 1. We assume that pS , pR, pS R are a
priori fixed, and the same values are used in each iterated
game.

As observed in [9], it is necessary to define a public-key
encryption scheme as an interactive protocol in which both
the sender and the receiver can generate their own public
and secret keys.

Definition 1 (Public-key encryption scheme). An n-
round public-key encryption scheme Π is the tuple
({Genw}w∈{S ,R}, {Enc j} j∈{1,...,n},Dec) of probabilistic polynomial-
time algorithms such that

• Key generation: For each w ∈ {S ,R}, on input 1λ,
Genw outputs (pkw, skw). Let M denote the message
space.

• Encryption: For a message m ∈ M, set stS =

(pkS , pkR, skS ,m), stR = (pkS , pkR, skR), and c0 = ⊥.
Let w ∈ {S ,R} be the first sender, and w̄ ∈ {S ,R} \ {w}
the second sender. For each round j ∈ {1, . . . , n}, when
j is odd, Enc j(c j−1, stw) outputs (c j, st′w), and stw is up-
dated to st′w, and when j is even, Enc j(c j−1, stw̄) outputs
(c j, st′w̄), and stw̄ is updated to st′w̄.

• Decryption: After the encryption phase, on input stR,
Dec outputs m̂.

• Correctness: For any message m ∈ M, after the en-
cryption phase, Dec(stR) = m.

We define a formal security game for rational sender
and receiver in repeated games. Without loss of generality,
we assume that every probabilistic algorithm requires ran-
dom bits of length equal to the security parameter†, and that,
in the encryption phase, only the first algorithm for each
party is probabilistic.

Definition 2 (Repeated CPA game for rational parties).
Let Π = ({Genw}w∈{S ,R}, {Enc j} j∈{1,...,n},Dec) be an n-
round public-key encryption scheme. For a sequence
of adversaries A = (A1, A2, . . . ), the security param-
eter λ, valuable message spaces MS and MR, and a

†If the algorithm requires longer random bits, a pseudorandom
generator can be employed to stretch the length.
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pair of strategies (σS , σR), we define the following game
Gamerep(Π, λ, A,MS ,MR, σS , σR):

• Key generation phase:

– Choice of randomness: For each w ∈ {S ,R},
compute (agen

w , stw) ← σw(Mw), where agen
w ∈

{Good,Bad} and stw is the state information of w.
If agen

w = Good, choose rgen
w ∈ {0, 1}λ uniformly at

random. Otherwise, set rgen
w = 0λ.

– Key generation: For each w ∈ {S ,R}, generate
(pkw, skw) ← Genw(1λ; rgen

w ), and set the state
information for the challenge phase to be st1

w =

(stw, pkw, skw, pkw̄), where w̄ ∈ {S ,R} \ {w}.
– Outcome of the key generation phase: Output

(Numgen
S ,Numgen

R ), where Numgen
w takes 1 if agen

w =

Good, and 0 otherwise.

• Challenge phase: For i = 1, 2, . . . , do the following.

– Challenge generation: Given (pkS , pkR), Ai out-
puts (m0,m1, aS

A, a
R
A, stA), where m0,m1 ∈ MS ∪

MR
†, aS

A, a
R
A ∈ {0, 1} represent the choices of Ai

for the auxiliary inputs to the sender and the re-
ceiver, and stA is the state information of Ai. Then,
b ∈ {0, 1} is chosen uniformly at random.

– Choice of randomness: For each w ∈ {S ,R},
compute (aenc,i

w , sti+1
w ) ← σw(pkS , pkR, skw, sti

w,
auxw), where aenc,i

w ∈ {Good,Bad}, auxS =

(mb, v
i
R, a

enc,i−1
R ), auxR = (aenc,i−1

S , vi
S ), aenc,0

R =

aenc,0
S = ⊥, vi

R = ValiR if aS
A = 1, and vi

R = ⊥

otherwise, vi
S = ValiS if aR

A = 1, and vi
S = ⊥ oth-

erwise, where ValiR and ValiS are defined below. If
aenc,i
w = Good, then choose rgen

w ∈ {0, 1}λ uniformly
at random. Otherwise, set rgen

w = 0λ.
– Guessing the challenge: The challenge mes-

sage mb is encrypted by the interaction using
{Enc j} j∈{1,...,n}, where w ∈ {S ,R} uses rgen

w as the
random bits for the encryption algorithms.
Given the transcript of the interaction and stA, Ai
outputs b′ ∈ {0, 1}.

– Outcome of the stage game: Output (Wini,ValiS ,
ValiR,Numi

S ,Numi
R), where Wini takes 1 if b′ = b,

and 0 otherwise, Valiw takes 1 if mb ∈ Mw, and 0
otherwise, and Numi

w takes 1 if aenc,i
w = Good, and

0 otherwise.

• The outcome of the game is (Numgen
S ,Numgen

R , {Advi,

ValiS ,ValiR,Numi
S ,Numi

R}i=1,...), where Advi = 2|E[Wini]−
1/2| and the probability is taken over the key genera-
tion phase and the i-th challenge phase.

In the above game, the adversary can choose whether
†In general, message spaces should be dependent on the pub-

lic key. This can be realized by defining an embedding func-
tion Emb(·) for valuable message spaces Mw and denoting by
Embpk(Mw) the valuable message space corresponding toMw un-
der the public key pk. Then, the adversary chooses messages from
Embpk(MS ) ∪ Embpk(MR). For simplicity, we use MS and MR
instead.

the sender (and the receiver) can know the value of a mes-
sage for the other player, namely ValiR (and ValiS ), before
interacting with the other player. This setting is challenging
as observed in [9].

Note that the adversary Ai plays the CPA game only at
the i-th stage game, and does not communicate with other
adversaries. Thus, it is possible to achieve a negligible ad-
vantage for every stage game although we define the whole
CPA game as an infinitely-repeated game.

We assume that strategies (σS , σR) are chosen from the
set of all probabilistic algorithms. Thus, they are not neces-
sarily polynomial-time computable.

Next, we define the utility functions in the repeated
CPA game. In repeated games, the discount factor δ > 0
is employed so that the utility of the i-th stage game is dis-
counted by the factor δi−1. We assume that rational players
calculate their utilities as if the stage games will be played
infinitely.

Definition 3. Let (σS , σR) be a pair of strategies of the
game Gamerep. For a discount factor δ ∈ (0, 1), the
utility of player w ∈ {S ,R} when the outcome Out =

(Numgen
S ,Numgen

R , {Advi,ValiS ,ValiR,Numi
S , Numi

R}i=1,...)
happens is defined by

uw(Out) = −crand
w · Numgen

w +

∞∑
i=1

δi−1uw[i],

where uw[i] is the utility of player w in the i-th stage game,
defined by

uw[i] = usec
w · (−Ãdv

i
) · Valiw − crand

w · Numi
w,

and crand
w , usec

w ∈ R represent the cost of generating random-
ness and the utility when the message is sent securely, re-
spectively, and Ãdv

i
is equal to Advi except that Ãdv

i
= 0

if Advi is a negligible function in λ. We assume that usec
w >

crand
w > 0, which implies that the security is worth paying the

cost of generating randomness.
The utility when the players follow a pair of strategies

(σS , σR) is defined by

Uw(σS , σR) = min
A,MS ,MR

{E [uw(Out)]} ,

where Out is the outcome of the game Gamerep(Π, λ, A,
MS ,MR, σS , σR), and the minimum is taken over all se-
quences of probabilistic polynomial-time adversaries A =

(A1, A2, . . . ) and valuable message spacesMS andMR. We
assume that the parameters δ, crand

w , usec
w are independent of

the security parameter λ††. Since Out is a function of λ,
Uw(σS , σR) is a function of λ.

A round version Ãdv
i
of Advi is introduced for the sim-

plicity of arguments. In addition, we assume that rational

††In our analysis, the assumption is not essential. Indeed, the
main theorem (Theorem 1) holds as long as the condition in the
theorem is satisfied.
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players are not concerned about a negligible advantage of
their utility.

Definition 4 (Nash equilibrium). A pair of strategies
(σS , σR) is called a Nash equilibrium if for every w ∈ {S ,R}
and strategy σ′w, it holds that Uw(σ∗S , σ

∗
R) ≤ Uw(σS , σR)

for every sufficiently large λ, where (σ∗S , σ
∗
R) = (σ′S , σR) if

w = S , and (σ∗S , σ
∗
R) = (σS , σ

′
R) otherwise.

We define the security of encryption schemes for ra-
tional players. For an encryption scheme Π and a pair of
strategies (σS , σR), we require that (1) when the players fol-
low (σS , σR), Π is secure in every stage game, and (2) the
strategy of following (σS , σR) is a Nash equilibrium.

Definition 5. Let Π = ({Genw}w∈{S ,R}, {Enc j} j∈{1,...,n}, Dec)
be a public-key encryption scheme, and (σS , σR) a pair of
strategies of the game Gamerep. We say (Π, σS , σR) is CPA
secure with a Nash equilibrium if

1. for any sequence of probabilistic polynomial-time ad-
versaries A = (A1, A2, . . . ), and any sets of mes-
sage spaces MS and MR, there is a negligible
function ε(·) such that Advi ≤ ε(λ) for every i
in Gamerep(Π, λ, A,MS ,MR, σS , σR) for every suffi-
ciently large λ; and

2. (σS , σR) is a Nash equilibrium.

3. Two-Round Scheme

We propose a two-round scheme that achieves a CPA secu-
rity with a Nash equilibrium. The scheme can be based on
any usual CPA-secure encryption scheme. In the key gener-
ation phase, both the sender and the receiver generate their
own public key and secret key. In the encryption phase, a
key agreement protocol is conducted to share a key. The
shared key has the property such that it is a uniformly ran-
dom string if and only if both players use good randomness
in the encryption phase.

The above two-round scheme is not secure in a one-
shot game, since if a message to be sent is valuable only to
the receiver, the sender never uses good randomness. We
overcome the insecurity in a one-shot game by a mecha-
nism of infinitely-repeated games. In repeated games, each
player can choose an action depending on the actions in the
previous stage games. We employ a grim trigger strategy as
a punishment strategy in repeated games. Initially, players
choose good randomness in the encryption phase regardless
of the value of a message to be sent. In any stage game,
if some player chooses bad randomness, then bad random-
ness will be chosen in every subsequent game. This strategy
is effective when valuable messages to each player will be
chosen with at least a certain probability. The mechanism is
similar to the repeated prisoners’ dilemma.

We present a formal description of our two-round
scheme Πtwo = ({Genw}w∈{S ,R}, {Enc1,Enc2},Dec) and the
grim trigger strategy for the repeated CPA game. The
scheme is based on a public-key encryption scheme Π =

(Gen,Enc,Dec). The message space is {0, 1}2λ, where λ is
the security parameter.

• Genw(1λ) : Generate (pkw, skw) ← Gen(1λ), and out-
put (pkw, skw). The state information is set to be st1

w =

(pkw, pkw̄, skw), where w̄ ∈ {S ,R} \ {w}.
• Enc1(st1

R): Sample r1 ∈ {0, 1}λ uniformly at ran-
dom, compute c1 ← Enc(pkS , r1), and output (c1, st2

R),
where st2

R = (st1
R, r1).

Enc2(m, c1, st1
S ): Sample r2 ∈ {0, 1}λ uniformly at

random and compute c2 ← Enc(pkR, r2) and r̂1 ←

Dec(skS , c1). Then, set r = r̂1◦ r2, compute c3 ← m⊕r,
and output (c2, c3), where ◦ denote the concatenation
operation.

• Dec(c2, c3, st2
R): Compute r̂2 ← Dec(skR, c2) and r̂ =

r1 ◦ r̂2. Then output m̂ = c3 ⊕ r̂.

The above scheme Πtwo is similar to the three-round
scheme presented in [9]. In the scheme, a shared key in the
encryption phase has a property such that it is a uniformly-
random string if one of the sender and the receiver uses good
randomness. This scheme is not secure without the final
step. This is because the sender does not have any incentive
to use good randomness in the key generation phase. The
sender can achieve their own security only by using good
randomness in the encryption phase. To prevent such lazi-
ness of the sender, we need the final step in which the re-
ceiver encrypts a recovered message using the sender’s pub-
lic key and makes it public. In repeated CPA games, the
final step is not needed since a punishment can be imposed
in subsequent stage games.

The grim trigger strategy (σtri
S , σ

tri
R ) for repeated CPA

games is defined as follows.

• For each w ∈ {S ,R}, σtri
w (Mw) outputs (agen

w , stw) =

(Good,Good).
• For each w ∈ {S ,R}, σtri

w (pkS , pkR, skw, sti
w, auxw) out-

puts (aenc,i
w , sti+1

w ), where sti+1
w = (sti

w, a
enc,i
w , aenc,i−1

w̄ ),
w̄ ∈ {S ,R} \ {w}, and aenc,i

w = Good if aenc,1
x = · · · =

aenc,i−1
x = Good for every x ∈ {S ,R}, and aenc,i

w = Bad
otherwise.

Recall that pS , pR, pS R denote the probabilities that
chosen messages in repeated CPA games are inMS \ MR,
MR \ MS , and MS ∩ MR, respectively. We show that the
scheme Πtwo is secure under the trigger strategy if valuable
messages to each player will be chosen in stage games with
at least a certain probability.

Theorem 1. The tuple (Πtwo, σ
tri
S , σ

tri
R ) is CPA secure

with a Nash equilibrium if pw + pS R > max{(2 −
δ)(crand

w /usec
w ), crand

w /(δusec
w )} for each w ∈ {S ,R}.

Proof. Let A = (A1, A2, . . . ) be a sequence of probabilistic
polynomial-time adversaries, andMS andMR sets of mes-
sage spaces.

First, we show that there is a negligible func-
tion ε(·) such that Advi ≤ ε(λ) for every i in
Gamerep(Πtwo, λ, A,MS ,MR, σ

tri
S , σ

tri
R ). Since the players

follow (σtri
S , σ

tri
R ), they choose good randomness at the key
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generation phase and every encryption phase. For the i-th
stage game, suppose Ai chooses m0,m1 as a pair of chal-
lenge messages. The view of Ai is

{pkS , pkR,m0,m1,Enc(pkS , r1),Enc(pkR, r2),
mb ⊕ (r1 ◦ r2)}
≈c {pkS , pkR,m0,m1,Enc(pkS , r′1),Enc(pkR, r′2),

mb ⊕ (r1 ◦ r2)}
= {pkS , pkR,m0,m1,Enc(pkS , r′1),Enc(pkR, r′2), r}
= {pkS , pkR,m0,m1,Enc(pkS , r′1),Enc(pkR, r′2),

m1−b ⊕ (r1 ◦ r2)}
≈c {pkS , pkR,m0,m1,Enc(pkS , r1),Enc(pkR, r2),

m1−b ⊕ (r1 ◦ r2), }

where r1, r2, r′1, r
′
2 ∈ {0, 1}

λ and r ∈ {0, 1}2λ are uniformly
random strings. We have used the CPA security of the un-
derlying scheme Π for the relation ≈c. Thus, for every i ∈ N,
there is a negligible function εi(·) such that Advi ≤ εi(λ).
Since i is countable, there is a negligible function ε(·) such
that Advi ≤ ε(λ) for every i and every sufficiently large λ
[38].

Next, we show that the pair of strategies (σtri
S , σ

tri
R ) is a

Nash equilibrium. It follows from the above security analy-
sis that

Uw(σtri
S , σ

tri
R ) ≥ −crand

w +

∞∑
i=1

δi−1(−crand
w )

≥ −crand
w −

crand
w

1 − δ
= −

(2 − δ)crand
w

1 − δ
. (1)

Let consider the case that player w ∈ {S ,R} chooses
Bad in the key generation phase. Suppose S chose Bad in
the key generation phase. (The same argument can be ap-
plied to the case for R.) An adversary Ai can obtain r1 by
decrypting Enc(pkS , r1) by using skS , which is a part of the
output of Gen(1λ; 0λ). Thus Ai can win every stage game
by choosing m0,m1 such that the first halves of m0 and m1
are different, and, on receiving c3, outputting b′ = 0 if the
first half of c3 ⊕ (r1 ◦ 0λ) is equal to that of m0, and b′ = 1
otherwise. Since the advantage Ãdv

i
will be 1 for every i,

the utility US will be at most
∞∑

i=1

(
δi−1usec

S (−1)(pS + pS R)
)

= −
(pS + pS R)usec

S

1 − δ
,

which is less than (1) since pS + pS R > (2 − δ)(crand
S /usec

S ).
Thus, each player cannot increase the utility by choosing
Bad in the key generation phase.

In the following, we consider players who choose
Good in the key generation phase, but may choose Bad in
the encryption phase. In the analysis, we use the following
three values for the utility uw[i] of the i-th stage game:

• u1 = 0, which is the case that Valiw = 0 and Numi
w = 0;

• u2 = −crand
w , which is the case that Valiw = 0,Numi

w = 1

or that Ãdv
i
= 0,Valiw = 1,Numi

w = 1;

• u3 = −usec
w , which is the case that Ãdv

i
= 1, Valiw = 1,

and Numi
w = 0.

Note that u1 > u2 > u3.
Suppose that player R follows σtri

R , and player S
chooses Good for stages i = 1, . . . , r−1, but chooses Bad at
the r-th stage game. Then, the utility uS [i] for the i-th stage
game is u2 for i = 1, . . . , r − 1 since both players chooses
Good, and thus Ãdv

i
= 0. At the r-the stage, since player S

chooses Bad, uS [r] is at most u1. After the r-th stage, player
R uses Bad in every subsequent stage game since R follows
σtri

R . Then, an adversary Ai can win the i-th stage game for
every i > r. Since R uses Bad, r1 = 0λ. Thus Ai can win
the game by choosing m0,m1 such that the first halves of m0
and m1 are different, and outputting b′ = 0 if the first half
of c3 is equal to that of m0, and b′ = 1 otherwise. For such
Ai’s, uS [i] is u1 with probability pR, and u3 with probability
pS + pS R. Thus, the utility US is at most

− crand
w + u2 + δu2 + · · · + δr−2u2 + δr−1u1

+

∞∑
i=r+1

δi−1 (pRu1 + (pS + pS R)u3)

= −
(2 − δ − δr−1)crand

S + δr(pS + pS R)usec
S

1 − δ
,

which is less than (1) since pS + pS R > crand
S /(δusec

S ).
The same argument holds when player S follows σtri

S ,
but player R tries to choose Bad in the encryption phase.
Thus, both players S and R cannot increase their utility by
changing their strategies from (σtri

S , σ
tri
R ). Hence, (σtri

S , σ
tri
R )

is a Nash equilibrium, and thus the statement follows. �

4. Conclusions

In this work, we employed repeated games for reducing
the round complexity of encryption schemes performed by
rational players. Our two-round scheme achieves a Nash
equilibrium in the repeated CPA games. However, a Nash
equilibrium may not be a satisfying solution concept in re-
peated games. The notion of a subgame-perfect equilibrium
is known as a stronger solution concept in repeated games.
Thus, one of the future work is to achieve a subgame-perfect
equilibrium in our framework. For the one-shot game,
a stronger solution concept, strict Nash equilibrium, was
achieved in the previous work [9]. Another future work is to
explore the possibility of the mechanism of repeated games
for other cryptographic primitives. Since a repeated game
models a long-term relationship, the mechanism may be ap-
plied to cryptographic protocols by considering a long-term
relationship.
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