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Randomness Leakage in the KEM/DEM Framework∗

Hitoshi NAMIKI†, Nonmember, Keisuke TANAKA††, and Kenji YASUNAGA†††a), Members

SUMMARY Recently, there have been many studies on constructing
cryptographic primitives that are secure even if some secret information
leaks. In this paper, we consider the problem of constructing public-key
encryption schemes that are resilient to leaking the randomness used in the
encryption algorithm. In particular, we consider the case in which public-
key encryption schemes are constructed from the KEM/DEM framework,
and the leakage of randomness in the encryption algorithms of KEM and
DEM occurs independently. For this purpose, we define a new security
notion for KEM. Then we provide a generic construction of a public-key
encryption scheme that is resilient to randomness leakage from any KEM
scheme satisfying this security. Also we construct a KEM scheme that
satisfies the security from hash proof systems.
key words: leakage resilient cryptography, public-key encryption,
KEM/DEM framework, hash proof system

1. Introduction

Recently, many studies have been devoted to construct en-
cryption schemes that are secure even if some of the se-
cret information leaks [1]–[5], [10], [15], [16]. In [1], [2],
[5], [10], [15], they mainly considered the case of leaking a
secret key. In particular, studies in [1], [2], [15] considered
the case that any of the secret-key information leaks, and
the restriction is only the amount of the leaked information.
This leakage model captures many realistic attacks includ-
ing side-channel attack and cold-boot attack [11]. Naor and
Segev [15] also studied the case of leaking the randomness
used in the key generation algorithm. They proved that their
proposed encryption scheme, which is resilient to the secret-
key leakage, is also resilient to the leakage of the random-
ness used in the key generation algorithm.

Bellare et al. [4] considered the case of leaking the ran-
domness used in the encryption algorithm. Their definition
of leaking the randomness is different from those of other
studies of information leakage. They considered the case
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that random strings are sampled from not a uniformly ran-
dom distribution but an entropically guaranteed distribution.

In this work, we investigate the possibility of construct-
ing public-key encryption schemes that are secure even if the
randomness information used in the encryption algorithm
leaks. The restriction we consider is only the amount of the
leaked information.

First we define the security notions of public-key en-
cryption in the presence of the leakage of the randomness
used in the encryption algorithm. The definitions are sim-
ilar to those of the secret-key leakage introduced in [1],
[15]. We define two randomness-leakage attacks, a priori
randomness-leakage attack and a posteriori randomness-
leakage attack. In the a priori randomness-leakage attack,
the adversary can obtain the leakage information on the ran-
domness before she receives a public key. In the a poste-
riori randomness-leakage attack, the adversary can obtain
the leakage information after receiving the public key. Then
we show that a secure public-key encryption scheme against
a priori randomness-leakage attack can be constructed from
any secure public-key encryption scheme. This is proved
by a similar argument to the case of key leakage in [15].
However, for the a posteriori randomness-leakage attack, we
show that no public-key encryption scheme can achieve the
security. This situation is contrast to the case of secret-key
leakage. Indeed, it is shown that a secure scheme for key
leakage can be constructed from any hash proof system [15].
The results are summarized in Table 1, in which we compare
the results of randomness leakage with that of key leakage.

Next, we focus on public-key encryption schemes
based on the framework of key-encapsulation mechanism
(KEM) and data-encapsulation mechanism (DEM). Since
no scheme can achieve the randomness-leakage resilience
if the leakage occurs after the adversary receives the public
key, we restrict the way of leakage as follows. (1) The leak-
age of randomness used in KEM and that in DEM occurs
independently, and (2) the leakage of randomness used in
DEM occurs after the adversary chose two challenge mes-
sages. The situation of the first condition arises when the
computation of KEM and that of DEM are implemented
by two independent computer chips. The second condition
naturally arises since the computation of DEM, which con-
tains the information on a message, cannot be performed be-
fore choosing the message to be encrypted. Regarding the
leakage amount, we restrict the amount of the randomness
leakage only for the encryption of KEM, and not for DEM.
Namely, the adversary can learn the entire random bits used
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Table 1 Comparison between key leakage and randomness leakage.

Timing of leakage Key leakage Randomness leakage
Before receiving the public key IND-CPA PKE [15] IND-CPA PKE (Sec. 3.1)
After receiving the public key Hash Proof Systems [15] Impossible (Sec. 3.2)
After receiving the ciphertext Impossible [1] Impossible (Sec. 3.2)

Table 2 Information leakage in public-key encryption schemes.

References Leakage information Assumption Timing of leakage
[1] Secret key LWE After receiving the public key

[15] Secret key HPS After receiving the public key
[4] Randomness Lossy TDF Before receiving the public key

This work Randomness* HPS After receiving the public key

* The leakage model is the KEM/DEM model defined in Definition 7. As presented in Table 1, no PKE scheme is
secure against leakage attacks after receiving the public key when considering the model defined in Definition 6.

in the encryption of DEM. Note that we allow an encryp-
tion algorithm of DEM to be randomized, while it is usually
deterministic.

To construct a public-key encryption scheme secure
against randomness leakage attack, we define a new security
notion, called entropic security for KEM. A KEM scheme is
entropically secure if there are fake public-keys such that the
distribution of real public-keys and that of fake public-keys
are computationally indistinguishable, and if a fake key is
used instead of a real key, the symmetric key is statistically
close to some high entropy distribution. Then, we provide a
generic construction of a public-key encryption scheme that
is resilient to randomness leakage from any entropically se-
cure KEM scheme.

Also we construct an entropically secure KEM scheme
from hash proof systems [6], [15]. The scheme can be seen
as a variant of KEM scheme of Naor and Segev [15], which
is secure against “secret-key” leakage attack.

In Table 2, we summarize the results of informa-
tion leakage on public-key encryption schemes. Note that
the scheme proposed in this work is the first scheme that
achieves the security against randomness leakage after re-
ceiving the public key.

1.1 Related Work

The key-leakage security in which the adversary can learn
any information on the secret key was first formalized by
Akavia, Goldwasser, and Vaikuntanathan [1]. In addition,
they showed that Regev’s lattice-based scheme is resilient to
the key leakage. Naor and Segev [15] extended the notion of
[1], and they proposed a general construction of public-key
encryption schemes that are resilient to key leakage based
on universal hash proof systems. In addition, they applied
the notion of leakage to the randomness used in the key-
generation algorithm. Alwen, Dodis, and Wichs [2] con-
structed varieties of key-leakage resilient public-key cryp-
tosystems, such as identification, signature, and authenti-
cated key agreement. See [3], [16] for surveys of leakage-
resilient cryptography.

Recently, Halevi and Lin [12] have studied a realiz-
able security of public-key encryption schemes in which the

leakage occurs after the adversary receives the ciphertext.
In particular, they bypass the impossibility of the ciphertext-
dependent leakage by assuming that the secret key consists
of two parts, and the leakage of the two parts occurs inde-
pendently. Their approach of “split-state” model is similar
to our approach, and used in several other studies in leakage-
resilient cryptography [7], [10], [14].

There are several studies related to the leakage of the
randomness used in the encryption algorithm. Bellare et
al. [4] considered the situation in which the randomness
used in the encryption algorithm is not uniformly random,
but is entropically guaranteed. They introduced a security
notion such that even if the randomness is not chosen uni-
formly at random, the scheme is secure as long as the joint
distribution of the message and the randomness has high en-
tropy. Note that the distribution of the randomness is chosen
without using the information on the public key, which is
different from the setting of our work.

Kamara and Katz [13] studied another type of random-
ness leakage in symmetric-key encryption. In their setting,
the adversary can control the randomness of the ciphertext
except that of the challenge ciphertext.

There are other formalization of information leakage.
Dizembowski and Pietrzak [10] considered the key leakage
under the assumption that only the computation leaks in-
formation, and constructed leakage-resilient stream-ciphers.
Dodis, Tauman Kalai, and Lovett [9] studied symmetric-key
encryption schemes under key-leakage attack. They consid-
ered the leakage of the form f (sk), where sk is the secret
key and f is any exponentially-hard one-way function, and
do not restrict the entropy of the secret key.

2. Preliminaries

In this section, we present notions, definitions, and tools that
are used in our constructions. Let n be the security param-
eter on all of the schemes in this paper, and Ut the uniform
distribution over {0, 1}t, where t ∈ N. For a distribution X,
we write x ← X to indicate that x is chosen according to X.
For a finite set Y , we write y← Y to indicate that y is chosen
from Y uniformly at random. We say an algorithm is PPT if
it runs by a probabilistic polynomial-time Turing machine.
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2.1 Randomness Extraction

The statistical distance between two random variables
X and Y over a finite domain Ω is Δ(X, Y) :=
1
2

∑
ω∈Ω |Pr[X = ω] − Pr[Y = ω]|. We say that two vari-

ables are ε-close if their statistical distance is at most ε.
The min-entropy of a random variable X is H∞(X) :=
− log(maxx Pr[X = x]). The min-entropy is a standard no-
tion of entropy used in cryptography since it measures the
worst case predictability of X. We also use the average min-
entropy defined as follows:

H̃∞(X|Y) := − log
(
Ey←Y

[
2−H∞(X|Y=y)]) .

The average min-entropy represents the optimal predictabil-
ity of X, given knowledge of Y . The following lemma was
proved by Dodis, Ostrovsky, Reyzin, and Smith [8], which
will be used in this paper.

Lemma 1: Let r ∈ R. If Y has 2r possible values and
Z is any random variable, then for a random variable X,
H̃∞(X|(Y, Z)) ≥ H̃∞(X|Z) − r.

We use a strong randomness extractor as a main tool in
our constructions. The following definition naturally gen-
eralizes the standard definition of strong extractors to the
setting of the average min-entropy.

Definition 1: A function Ext : {0, 1}k × {0, 1}t → {0, 1}m is
an average-case (n, ε)-strong extractor if for all the pairs of
random variables (X, I) such that X ∈ {0, 1}k, and H̃∞(X|I) ≥
n, it holds that

Δ ((Ext(X,Ut),Ut, I), (Um,Ut, I)) ≤ ε.
Dodis et al. proved the following variant of the leftover hash
lemma. Any family of pairwise independent hash functions
is indeed an average-case strong extractor [8].

Lemma 2: Let X, Y be random variables such that X ∈
{0, 1}n and H̃∞(X|Y) ≥ k. Let H be a family of pairwise
independent hash functions from {0, 1}n to {0, 1}m. Then for
h ∈ H chosen uniformly at random, it holds that

Δ((Y, h, h(X)), (Y, h,Um)) ≤ ε
as long as m ≤ k − 2 log(1/ε).

2.2 The KEM/DEM Framework

We present the framework of key-encapsulation mecha-
nism (KEM) and data-encapsulation mechanism (DEM).
The KEM/DEM paradigm is a simple way of constructing
efficient and practical public-key encryption schemes. KEM
is used as public-key encryption used for encrypting a ran-
dom symmetric key K together with its ciphertext. The sym-
metric key is used for encrypting the message using DEM.
A formal definition of KEM and DEM is given as follows.

Definition 2: Key encapsulation mechanism is a tuple of
PPT algorithms KEM = (KEM.Gen,KEM.Enc,KEM.Dec)
such that

KEM.Gen : On input a security parameter 1n, output a pair
of keys (pk, sk).

KEM.Enc : On input a public key pk and a random string
r from some underlying randomness space, output a
ciphertext c and a symmetric key K.

KEM.Dec : On input a secret key sk and a ciphertext c, out-
put a symmetric key K.

It is required that for any (pk, sk)← KEM.Gen(1n) and any
random string r,

KEM.Dec(sk, c) = K,

where (c,K)← KEM.Enc(pk, r).

Definition 3: Data encapsulation mechanism is a tuple of
PPT algorithms DEM = (DEM.Gen,DEM.Enc,DEM.Dec)
such that

DEM.Gen : On input a security parameter 1n, output a sym-
metric key K.

DEM.Enc : On input a symmetric key K, a message m, and
a random string r, output a ciphertext c.

DEM.Dec : On input a symmetric key K and a ciphertext c,
output a message m.

Note that we define DEM.Enc as a randomized algorithm,
while it is usually deterministic. We provide a KEM/DEM
construction in Sect. 5 in which the encryption algorithm of
DEM is randomized.

In this paper, we only consider the case in which
a public-key encryption scheme is constructed from
KEM/DEM paradigm. KEM is used for exchanging a
symmetric key K. The message is encrypted using DEM
with the symmetric key K. Thus, a public-key encryption
scheme can be written as a tuple of five PPT algorithms
(KEM.Gen,KEM.Enc,KEM.Dec,DEM.Enc,DEM.Dec).

2.3 Hash Proof Systems

Hash proof systems were introduced by Cramer and Shoup
[6]. We briefly review the presentation in [15], where hash
proof systems are viewed as key encapsulation mechanisms.

In hash proof systems, ciphertexts are generated in two
modes. In the first mode, valid ciphertexts are generated,
where encapsulated key is well-defined and decapsulated
with the secret key. Additionally, the process of generat-
ing a valid ciphertext produces a witness to the fact that the
ciphertext is valid. In general, the randomness for generat-
ing a valid ciphertext can be a witness for that ciphertext,
and we will use this fact in our construction. In the second
mode, invalid ciphertexts are generated, and essentially con-
tain no information on the encapsulated key. The computa-
tional requirement is that the two modes are computationally
indistinguishable.
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2.3.1 Smooth Projective Hashing

LetSK andPK be the domains of secret and public keys,K
the encapsulated key space, C the ciphertext space, andV ⊂
C the valid ciphertext space. Let Λ = {Λsk : C → K} be
a collection of hash functions. Then, Λ is called projective
if there is a projection μ : SK → PK such that for all
v ∈ V, sk1, sk2 ∈ SK satisfying μ(sk1) = μ(sk2), it holds
that Λsk1 (v) = Λsk2 (v). A projective hash function is called
δ-smooth if for all c′ ∈ C \ V, it holds that

Δ((pk, c′,Λsk(c′)), (pk, c′,K)) ≤ δ,
where sk ∈ SK and K ∈ K are sampled uniformly at ran-
dom, and pk = μ(sk).

2.3.2 Hash Proof System

Definition 4: A hash proof system is a tuple of three
polynomial-time algorithms HPS = (Param,Pub,Priv)
such that

Param: On input a security parameter 1n, output the de-
scription (SK ,PK ,C,V,K ,Λ, μ).

Pub: On input a public key pk = μ(sk), a valid ciphertext
c ∈ V, and a witness w of the fact that c ∈ V, output
the encapsulated key K = Λsk(c). We assume that Pub
is a deterministic algorithm, and that the witness w is
randomness for sampling c fromV.

Priv: On input a secret key sk ∈ SK and a ciphertext c,
output the encapsulated key K = Λsk(c), which is the
same as the key obtained by Pub(μ(sk), c, w), where w
is a witness of the fact that c ∈ V. We assume that Priv
is a deterministic algorithm.

If a collectionΛ of hash functions is δ-smooth, then we
say that the hash proof system has δ-smoothness.

As a computational problem, we require the subset
membership problem is hard in HPS. Formally, we require
that for any PPT algorithm A,

AdvSMPHPS,A(n)

:=
∣∣∣∣∣ Pr
c0←V

[A(F, c0) = 1] − Pr
c1←C\V

[A(F, c1) = 1]
∣∣∣∣∣

is negligible in n, where F = (SK ,PK ,C,V,K ,Λ, μ) is
generated by Param(1n).

3. Randomness Leakage in Public-Key Encryption

Akavia et al. [1] introduced the security of public-key en-
cryption schemes in the presence of secret-key leakage. We
formalize the security in the presence of randomness leak-
age based on their notion. In particular, we consider the
leakage of the randomness used in the encryption algorithm.

We define two randomness-leakage attacks, a priori
randomness-leakage attack and a posteriori randomness-
leakage attack. In the a priori randomness-leakage attack,

the adversary can have access to the leakage oracle before
she obtains a public key. In the a posteriori randomness-
leakage attack, the adversary can have access to the leakage
oracle after she obtains the public key.

3.1 A Priori Randomness-Leakage Attack

Let Π = (Gen,Enc,Dec) be a public-key encryption
scheme. Namely, on input a security parameter, Gen out-
puts a pair of a public key and a secret key. On input a
public key and a message, Enc outputs a ciphertext. On
input a secret key and a ciphertext, Dec outputs a mes-
sage. Let �(n) be the length of the randomness used in
Enc, where n is the security parameter. The leakage or-
acle, denoted by RandLeak(r), takes as input a function
f : {0, 1}�(n) → {0, 1}∗ and outputs f (r), where r is the ran-
domness used in Enc. We call the adversary A is an a priori
λ(n)-randomness-leakage adversary if the sum of the out-
put length of RandLeak that A queries is at most λ(n), and
f is chosen by A before she receives the public key. Note
that, although we may consider adaptive leakage, in which
the adversary can access to the leakage oracle adaptively,
it does not affect our definitions of randomness leakage as
discussed in [1].

Definition 5: A public-key encryption scheme Π =

(Gen,Enc,Dec) is a priori λ(n)-randomness-leakage re-
silient if for any PPT a priori λ(n)-randomness-leakage ad-
versary A = (A1, A2, A3), it holds that

Advapriori
Π,A (n)

:=
∣∣∣∣Pr
[
Exptapriori

Π,A (0) = 1
]
− Pr
[
Exptapriori

Π,A (1) = 1
]∣∣∣∣

is negligible in n, where the experiment Exptapriori
Π,A (b) is de-

fined as follows.

1. (pk, sk)← Gen(1n).
2. Choose r ← U�(n).
3. st1 ← ARandLeak(r)

1 (1n).
4. (m0,m1, st2)← A2(pk, st1) such that |m0| = |m1|.
5. c← Enc(pk,mb, r).
6. b′ ← A3(c, st2).
7. Output b′.

We provide a construction of public-key encryption
that is resilient to a priori randomness-leakage attack based
on any IND-CPA secure scheme. The construction is similar
to that of [1] for the case of the secret-key leakage.

Construction 1: Let Π = (Gen,Enc,Dec) be a public-key
encryption scheme, �(n) the length of the random string used
in Enc, and Ext : {0, 1}k(n)×{0, 1}t(n) → {0, 1}�(n) an average-
case extractor. The scheme Π∗ = (Gen∗,Enc∗,Dec∗) is de-
fined as follows.

Gen∗: On input 1n, choose s ← Ut(n), compute (pk, sk) ←
Gen(1n), and output PK = (pk, s) and S K = sk.

Enc∗: On input a message m and a public key PK = (pk, s),
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choose r ← Uk(n) and output Enc(pk,m,Ext(r, s)).
Dec∗: On input a ciphertext c and a secret key S K = sk,

output Dec(sk, c).

Theorem 1: Let Π = (Gen,Enc,Dec) be an IND-CPA se-
cure public-key encryption scheme and Ext : {0, 1}k(n) ×
{0, 1}t(n) → {0, 1}m(n) an average-case (k(n) − λ(n), ε(n))-
strong extractor for some negligible function ε(n). Then, the
encryption scheme Π∗ is a priori λ(n)-randomness-leakage
resilient.

Proof. We show that for any adversary A, there exists an
adversary A′ such that

Advapriori
Π∗,A (n) ≤ AdvCPAΠ,A′ (n) + 2ε(n),

where the AdvCPAΠ,A′ (n) the advantage of A′ in the IND-
CPA game with Π. Consider the following experiment
ExptΠ,A(b):

1. (pk, sk) ← Gen(1n), choose r ← Uk(n), s ← Ut(n), and
z← Um(n). Let PK = (pk, s) and S K = sk.

2. st1 ← ARandLeak(r)
1 (1n).

3. (m0,m1, st2)← A2(PK, st1) such that |m0| = |m1|.
4. c← Enc(pk,mb, z).
5. b′ ← A3(c, st2).
6. Output b′.

From Definition 5 and the triangle inequality, it follows that

Advapriori
Π∗,A (n)

=
∣∣∣∣Pr
[
Exptapriori

Π∗ ,A (0) = 1
]
− Pr
[
Exptapriori

Π∗,A (1) = 1
]∣∣∣∣

≤
∣∣∣∣Pr
[
Exptapriori

Π∗ ,A (0) = 1
]
− Pr
[
ExptΠ,A(0) = 1

]∣∣∣∣

+
∣∣∣∣Pr
[
ExptΠ,A(0) = 1

]
− Pr
[
ExptΠ,A(1) = 1

]∣∣∣∣

+
∣∣∣∣Pr
[
ExptΠ,A(1) = 1

]
− Pr
[
Exptapriori

Π∗ ,A (1) = 1
]∣∣∣∣ .

The experiment ExptΠ,A(b) is identical to the experiment

Exptapriori
Π∗,A (b), except for the fact that Enc uses a truly ran-

dom input z, not Ext(r, s). Note that, from Lemma 1, given
the information of f (r), the average min-entropy of r is at
least (k − λ). Therefore the average-case strong extractor
guarantees that the statistical distance between the view of
the adversary in these two experiments is at most ε(n). This

implies that
∣∣∣∣Pr
[
ExptΠ,A(b) = 1

]
− Pr
[
Exptapriori

Π∗,A,F(b) = 1
]∣∣∣∣ ≤

ε(n) for b ∈ {0, 1}. Since ExptΠ,A(b) is the same as the IND-
CPA experiment, we can construct the IND-CPA adversary

A′ for which
∣∣∣∣Pr
[
ExptΠ,A(0) = 1

]
− Pr
[
ExptΠ,A(1) = 1

]∣∣∣∣ ≤
AdvCPAΠ,A′(n). �

3.2 A Posteriori Randomness-Leakage Attack

In this section, we define a posteriori randomness-leakage
attack. Consequently, we show that there is no public-key
encryption scheme that is a posteriori randomness-leakage

resilient even if the leakage information is only one bit.
We define the security in a similar way as in Def-

inition 5. An adversary A is called a posteriori λ(n)-
randomness-leakage adversary if the sum of the output
lengths of RandLeak is at most λ(n), and a leakage function
f is chosen by A before receiving the challenge ciphertext.

Definition 6: A public-key encryption scheme Π =

(Gen,Enc,Dec) is a posteriori λ(n)-randomness-leakage
resilient if for any PPT a posteriori λ(n)-randomness-
leakage adversary A = (A1, A2), it holds that

Advaposteriori
Π,A (n)

:=
∣∣∣∣Pr
[
Exptaposteriori

Π,A (0)=1
]
−Pr
[
Exptaposteriori

Π,A (1)=1
]∣∣∣∣

is negligible in n. The experiment Exptaposteriori
Π,A (b) is defined

as follows:

1. (pk, sk)← Gen(1n).
2. Choose r ← U�(n).
3. (m0,m1, st1)← ARandLeak(r)

1 (pk) such that |m0| = |m1|.
4. c← Enc(pk,mb, r).
5. b′ ← A2(c, st1).
6. Output b′.

We show that no public-key encryption scheme
achieves Definition 6. We construct an adversary A′
that breaks the a posteriori randomness-leakage resilience,
where λ(n) = 1. The strategy of A′ is as follows.
First, A′ makes two challenge messages m0,m1 arbi-
trary, and randomly chooses 1 ≤ i ≤ d(n), where
d(n) is the maximum length of the possible cipher-
texts. Then A′ asks the leakage oracle with f (·) =
{the i-th bit of the output of Enc(pk,m1, ·)}. After A′ re-
ceives the challenge ciphertext c, she checks whether the
i-th bit of c and f (r) are the same or not. If they are, she
outputs 1, and otherwise outputs 0. There exists at least one
position where the ciphertext of m0 and that of m1 are dif-
ferent because of the correctness of the scheme. If i is such
a position, then A′ can correctly predict the challenge mes-
sage. The probability it occurs is at least 1/d(n), which is a
lower bound of the probability Pr

[
Exptaposteriori

Π,A′ (0) = 0
]
. On

the other hand, Pr
[
Exptaposteriori

Π,A′ (1) = 1
]
= 1. Thus,

Advaposteriori
Π,A (n)

=
∣∣∣∣Pr
[
Exptaposteriori

Π,A (0)=1
]
−Pr
[
Exptaposteriori

Π,A (1)=1
]∣∣∣∣

=
∣∣∣∣
(
1−Pr

[
Exptaposteriori

Π,A′ (0)=0
])
−1
∣∣∣∣

≥ 1
d(n)
,

which is non-negligible.

4. Randomness Leakage in KEM/DEM

In this section, we define randomness-leakage attack for
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(c,K)← KEM.Enc(pk, r)

(c, d)

� m0,m1

�
d ← DEM.Enc(mb,K, r′)

b′�

Fig. 1 Experiment ExptRandLeak
Π,A (b).

KEM/DEM-based public-key encryption schemes. As dis-
cussed in Sect. 3, there is no public-key encryption that
achieves a posteriori randomness-leakage. Therefore, we
restrict the leakage of randomness such that the leaking of
random bits used in KEM.Enc and DEM.Enc occur inde-
pendently. Also when the adversary chooses two challenge
messages, she is not allowed to access to the leakage infor-
mation of random bits in DEM.Enc.

We describe the formal definition of the randomness-
leakage attack in KEM/DEM. The randomness-leakage ora-
cle for KEM.Enc, denoted by Leak, takes as input a function
f : R → {0, 1}∗ and outputs f (r), where R is the domain of
the randomness used in KEM.Enc and r is the random bits
generated in KEM.Enc. We restrict the function f to be ef-
ficiently computable. The leakage oracle for DEM.Enc, de-
noted by Leak′, takes as input a function g : R′ → {0, 1}∗
and output g(r′), where R′ is the domain of the randomness
used in DEM.Enc and r′ is the random bits generated in
DEM.Enc. We restrict the amount of the leaked bits for r
but not for r′. Namely, the adversary can learn the entire
random bits r′, which are generated in DEM.Enc. We call
an adversary A is a λ(n)-randomness-leakage adversary if
the sum of the output length of Leak that A queries is at
most λ(n).

Definition 7: A public-key encryption scheme Π =

(KEM.Gen,KEM.Enc,KEM.Dec,DEM.Enc,DEM.Dec) is
IND-CPA secure against λ(n)-randomness-leakage attack
if for any PPT λ(n)-randomness-leakage adversary A =

(A1, A2) it holds that,

AdvRandLeakΠ,A (n)

:=
∣∣∣Pr[ExptRandLeakΠ,A (0)=1] − Pr[ExptRandLeakΠ,A (1)=1]

∣∣∣

is negligible in n, where ExptRandLeakΠ,A (b) is defined as fol-
lows.

1. (pk, sk)← KEM.Gen(1n).
2. Choose r ∈ R uniformly at random.
3. (c,K)← KEM.Enc(pk, r).
4. (m0,m1, st1)← ALeak(r)

1 (pk) such that |m0| = |m1|.
5. Choose r′ ∈ R′ uniformly at random.
6. d ← DEM.Enc(mb,K, r′).
7. b′ ← ALeak

′(r′)
2 (c, d, st1).

8. Output b′.

Note that while the randomness of KEM is leaked when
the adversary chooses the challenge messages, that of DEM
is leaked only after submitting the challenge messages. This
captures a natural situation where the ciphertext of KEM
may (and can) be generated before a message to be en-
crypted is determined, and the ciphertext of DEM is gen-
erated after a message to be encrypted is determined.

5. Randomness-Leakage Resilient Schemes from
Entropically-Secure KEM

In this section, we first define a new security notion for
KEM. Then, we construct a public-key encryption scheme
that is IND-CPA secure against randomness-leakage attack
from any KEM scheme satisfying this security.

For a KEM scheme, we require that the symmetric key
K still has high average min-entropy even if the adversary
knows the public key pk, the ciphertext c, and any partial
information f (r) of the random string r. We consider a dis-
tribution PK∗ that is computationally indistinguishable from
the real distribution of pk, where pk is generated from the
key generation algorithm of KEM. Given pk∗ ∈ PK∗, c∗, and
f (pk∗, r), we require that K∗ is statistically close to some
distribution that has enough entropy, where (c∗,K∗) is gen-
erated according to KEM.Enc(pk∗, r) and f is an arbitrary
efficiently computable function whose output length is re-
stricted.

Definition 8: A KEM scheme (KEM.Gen,KEM.Enc,
KEM.Dec) is (κ(n), ε(n))-entropically secure against λ(n)-
randomness-leakage attack if

1. there exists an efficiently samplable distribution PK∗
that is computationally indistinguishable from the dis-
tribution {pk | (pk, sk)← KEM.Gen(1n)}, and

2. there is a distribution K′ such that

H̃∞(K′|pk∗, c∗, f (pk∗, r)) ≥ κ(n)

and

Δ((pk∗, c∗,K∗, f (pk∗, r)), (pk∗, c∗,K′, f (pk∗, r))) ≤ ε(n),

where pk∗ ← PK∗, (c∗,K∗)← KEM.Enc(pk∗, r), r ∈ R
is sampled uniformly at random, and f is an arbitrary
efficiently computable function whose output length is
at most λ(n).

We can construct a public-key encryption scheme se-
cure against randomness-leakage attack from any KEM
scheme satisfying Definition 8.

Theorem 2: Let Ext : G × {0, 1}t → {0, 1}m
be an average-case (κ(n) − λ(n), ε1(n))-strong extrac-
tor, and (KEM.Gen,KEM.Enc,KEM.Dec) a KEM scheme
that is (κ(n)−λ(n), ε2(n))-entropically secure against λ(n)-
randomness-leakage attack for some negligible func-
tions ε1(·) and ε2(·). Then, the following scheme
Π∗ = (KEM.Gen∗, KEM.Enc∗, KEM.Dec∗, DEM.Enc∗,
DEM.Dec∗) is a public-key encryption scheme that is IND-
CPA secure against λ(n)-randomness-leakage attack.



NAMIKI et al.: RANDOMNESS LEAKAGE IN THE KEM/DEM FRAMEWORK
197

Construction 2: The algorithms KEM.Gen∗, KEM.Enc∗,
and KEM.Dec∗ are the same as KEM.Gen, KEM.Enc,
and KEM.Dec, respectively. The algorithms DEM.Enc∗,
DEM.Dec∗ are defined as follows.

DEM.Enc∗: On input a symmetric key K and a message
M ∈ {0, 1}m, choose r′ ∈ {0, 1}t uniformly at random.
Output the ciphertext

d = (Ext(K, r′) ⊕ M, r′).

DEM.Dec∗ On input a symmetric key K and a ciphertext
d = (d1, d2), output the message

M = Ext(K, d2) ⊕ d1.

Proof. We define the experiments ExptRandLeak
∗

Π∗,A (b) and
ExptΠ∗,A(b) for b ∈ {0, 1} as follows.

ExptRandLeak
∗

Π∗,A (b):

1. Choose pk∗ from PK∗, where PK∗ is the distribution
defined in Definition 8.

2. Choose r ∈ R uniformly at random, where R is the
domain of the randomness used in KEM.Enc∗.

3. (c∗,K∗)← KEM.Enc∗(pk∗, r).
4. (m0,m1, st1)← ALeak(r)

1 (pk∗) such that |m0| = |m1|.
5. Choose r′ ∈ R′ uniformly at random, where R′ is the

domain of the randomness used in DEM.Enc∗.
6. d ← DEM.Enc∗(mb,K∗, r′).
7. b′ ← ALeak

′(r′)
2 (c∗, d, st1).

8. Output b′.

ExptΠ∗,A(b):

1. Choose pk∗ from PK∗.
2. Choose r ∈ R uniformly at random.
3. (c∗,K∗)← KEM.Enc∗(pk∗, r).
4. (m0,m1, st1)← ALeak(r)

1 (pk∗) such that |m0| = |m1|.
5. Choose r′ ∈ R′ uniformly at random.
6. Choose r∗ ← Um, and set d = (r∗ ⊕ mb, r′).
7. b′ ← ALeak

′(r′)
2 (c, d, st1).

8. Output b′.

Using the triangle inequality, for any adversary A it holds
that

AdvRandLeakΠ∗,A (n)

=
∣∣∣Pr[ExptRandLeakΠ∗,A (0)=1]−Pr[ExptRandLeakΠ∗,A (1)=1]

∣∣∣
≤ ∣∣∣Pr[ExptRandLeakΠ∗,A (0)=1]−Pr[ExptRandLeak

∗
Π∗,A (0)=1]

∣∣∣
(1)

+
∣∣∣Pr[ExptRandLeak

∗
Π∗,A (0)=1]−Pr[ExptΠ∗,A(0)=1]

∣∣∣ (2)

+
∣∣∣Pr[ExptΠ∗,A(0)=1]−Pr[ExptΠ∗,A(1)=1]

∣∣∣ (3)

+
∣∣∣Pr[ExptΠ∗,A(1)=1]−Pr[ExptRandLeak

∗
Π∗,A (1)=1]

∣∣∣ (4)

+
∣∣∣Pr[ExptRandLeak

∗
Π∗,A (1)=1]−Pr[ExptRandLeakΠ∗,A (1)=1]

∣∣∣ .
(5)

We first show an upper bound on the terms (1) and

(5). Note that, the difference between ExptRandLeakΠ∗ ,A (b) and

ExptRandLeak
∗

Π∗,A (b) is only the distribution of choosing pub-
lic keys. Since the distribution PK∗ and {pk | (pk, sk) ←
KEM.Gen(1n)} are computationally indistinguishable, there
is some negligible function AdvComp(n) that is an upper
bound on both (1) and (5).

Second, we show an upper bound on (2) and (4). The
difference between ExptΠ∗,A(b) and ExptRandLeak

∗
Π∗,A (b) is only

the mask string for mb, which is Ext(K∗, r′) and r∗, respec-
tively. From the property of the KEM scheme, there is a dis-
tribution K′ such that H̃∞(K′|pk∗, c∗, f (pk∗, r)) ≥ κ(n)−λ(n)
and Δ((pk∗, c∗, K∗, f (pk∗, r)), (pk∗, c∗, K′, f (pk∗, r))) ≤
ε2(n). Since r′ is chosen from Ut and Ext is an average-case
(κ(n) − λ(n), ε1(n))-strong extractor, we have that

Δ((Ext(K′, r′), r′, pk∗, c∗, f (pk∗, r)),

(r∗, r′, pk∗, c∗, f (pk∗, r))) ≤ ε1(n),

and thus

Δ((Ext(K∗, r′), r′, pk∗, c∗, f (pk∗, r)),

(r∗, r′, pk∗, c∗, f (pk∗, r))) ≤ ε1(n) + ε2(n).

Therefore, ε1(n) + ε2(n) is an upper bound on both (2) and
(4).

Finally, we show the term (3) is equal to zero. The dif-
ference between ExptΠ∗ ,A(0) and ExptΠ∗,A(1) is the message
mb for b ∈ {0, 1}. Since mb is masked by a uniformly ran-
dom string r∗, the experiments ExptΠ∗ ,A(0) and ExptΠ∗,A(1)
are the same. Thus, (3) is equal to zero.

Therefore, we have AdvRandLeakΠ∗,A (n) ≤ 2(AdvComp(n)+
ε1(n) + ε2(n)), which is negligible in n. �

6. The Construction of Entropically-Secure KEM

In this section, we provide a construction of entropically se-
cure KEM from hash proof systems. Our construction is
based on the KEM scheme of Naor and Segev [15], which is
entropically secure against “secret-key” leakage attack. To
achieve the “randomness” leakage resilience, we exchange
the roles of “secret key” and “randomness” in the Naor-
Segev (NS) scheme. Specifically, in our construction, the
KEM encryption of the NS scheme is performed in the key
generation algorithm, the key generation of the NS scheme
is performed in the encryption algorithm. That is, a cipher-
text of the NS scheme is used as a public key, and a public
key of the NS scheme is used as a ciphertext in our con-
struction. In general, such an exchange does not work since
(1) a ciphertext may be generated depending on the public
key, and (2) the encapsulated key must be decapsulated from
the secret key and the ciphertext. Both of the two points
can be circumvented by hash proof systems. First, a cipher-
text is just a random sample from the valid ciphertext space,
and is independent of public keys. Second, in hash proof
systems, there are two algorithms Pub and Λ(·) such that
Pub(pk, c, w) = Λsk(c), where c ∈ V is a valid ciphertext
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and w is the corresponding witness. Thus, exchanging the
roles of secret key and randomness correctly works for hash
proof systems.

Construction 3: Let HPS = (Param,Pub,Priv) be a hash
proof system with δ(n)-smoothness. The KEM scheme
(KEM.Gen,KEM.Enc,KEM.Dec) is defined as follows.

KEM.Gen : On input a security parameter 1n, F =

(SK ,PK ,C,V,K ,Λ, μ) ← Param(1n), and choose
c ∈ V uniformly at random together with the corre-
sponding witness w. Output a public key PK = (F, c)
and a secret key S K = w.

KEM.Enc : On input a public key pk = (F, c), choose sk ∈
SK uniformly at random, and compute pk = μ(sk) and
K = Λsk(c). Output pk as the ciphertext, and K as the
symmetric key.

KEM.Dec : On input a public key PK = (F, c), a secret key
S K = w and a ciphertext pk, output the symmetric key
Pub(pk, c, w).

The correctness of the above scheme follows from
the property of hash proof systems since for any public
key (F, c), ciphertext pk, and a secret key w, it holds that
Pub(pk, c, w) = Λsk(c).

Theorem 3: The KEM scheme defined in Construction 3
is (log |K|−λ(n), δ(n))-entropically secure against λ(n)-
randomness-leakage attack.

Proof. We need to show that (1) there exists a distribu-
tion PK∗ such that PK∗ is computationally indistinguishable
from the distribution {pk | pk ← KEM.Enc(1n)}, and that (2)
there is a distribution K′ such that

H̃∞(K′|pk∗, c∗, f (pk∗, r)) ≥ log |K|−λ(n)

and

Δ((pk∗, c∗,K∗, f (pk∗, r)), (pk∗, c∗,K′, f (pk∗, r))) ≤ δ(n),

where pk∗ ← PK∗, (c∗,K∗)← KEM.Enc(pk∗, r).
Regarding (1), we define PK∗ as follows.

PK∗: On input 1n, F = (SK ,PK ,C,V,K ,Λ, μ) ←
Param(1n), and choose c′ ∈ C \ V uniformly at ran-
dom, and output (F, c′)

It immediately follows from the hardness of subset
membership problem that PK∗ is computationally indistin-
guishable from the distribution {pk | pk ← KEM.Enc(1n)}.

Regarding (2), let K′ be a uniform distribution
over K . Then, it follows from Lemma 1 that
H̃∞(K′|pk∗, c∗, f (pk∗, r)) = H̃∞(K′|F, c′, μ(sk), f (pk∗, sk)) ≥
H̃∞(K′|F, c′, μ(sk)) − λ(n) = log |K| − λ(n). The δ(n)-
smoothness of the hash proof system implies that

Δ((pk∗, c∗,K∗), (pk∗, c∗,K′))
= Δ((F, c′, μ(sk),Λsk(c′)), (F, c′, μ(sk),K′))
≤ δ(n).

We need to consider the statistical distance given any

leakage of f (pk∗, r)(= f (F, c′, sk)). Note that, as also
discussed in [15] (the proof of Claim 4.2 of the full
version), the distribution of f (F, c′, sk) is fully deter-
mined by F, c′, μ(sk), and Λsk(c′). Let f ′ be a function
such that f ′(F, c′, μ(sk),Λsk(c′)) is identically distributed to
f (F, c′, sk). Then, by using the fact that applying the same
function to two distributions cannot increase their statistical
distance, we have that

Δ((F, c′, μ(sk),Λsk(c′), f ′(F, c′, μ(sk),Λsk(c′)),
(F, c′, μ(sk),K′, f ′(F, c′, μ(sk),Λsk(c′)))) ≤ δ(n).

Therefore, the statement follows. �

A DDH-based Instantiation

We give an instantiation of Construction 3 based on the de-
cisional Diffie-Hellman (DDH)-based hash proof system.

Construction 4: Let G be a group of prime order p,
and λ(n) a leakage parameter. Then, the KEM scheme
(KEM.Gen,KEM.Enc,KEM.Dec) is defined as follows.

KEM.Gen : On input a security parameter 1n, choose x1 ∈
Zp and g1, g2 ∈ G uniformly at random. Output a pair
of keys (pk, sk) as

pk = (g1, g2, g
x1

1 , g
x1

2 ), sk = x1.

KEM.Enc : On input a public key pk = (g1, g2, pk1, pk2),
choose r1, r2 ∈ Zp uniformly at random, and output the
ciphertext c and the symmetric key K as

c = gr1
1 g

r2
2 , K = (pk1)r1 (pk2)r2 .

KEM.Dec : On inputs a secret key sk and a ciphertext c,
output the symmetric key as

K = csk.

The correctness of the scheme immediately follows since
if c = gr1

1 g
r2
2 , pk1 = g

x1
1 and pk2 = g

x1
2 , then K =

(pk1)r1 (pk2)r2 = (gx1
1 )r1 (gx1

2 )r2 = (gr1
1 g

r2
2 )x1 = cx1 .

Since the DDH-based hash proof system has 0-
smoothness, the above instantiation of KEM is (log p, 0)-
entropically secure under the DDH assumption.

See [15] for other constructions of hash proof systems.

7. Conclusions

In this paper, we have studied the security of public-key
encryption against the leakage of randomness for encryp-
tion. In contrast to the secret key leakage, it is impossible
to achieve the security against leakage if the leakage can
depend on the public key. To circumvent this impossibil-
ity result, we have considered the leakage model for the
KEM/DEM framework such that the leakage of random-
ness for KEM and DEM occurs independently. Then, we
have constructed a KEM/DEM scheme secure in this model



NAMIKI et al.: RANDOMNESS LEAKAGE IN THE KEM/DEM FRAMEWORK
199

from hash proof systems. The construction is based on
the secret-key leakage-resilient KEM/DEM scheme of Naor
and Segev [15]. We have managed to convert their “secret-
key” leakage-resilient scheme to a “randomness” leakage-
resilient scheme.
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