
Randomness Leakage in
the KEM/DEM Framework

Hitoshi Namiki1, Keisuke Tanaka2, and Kenji Yasunaga2

1 Ricoh Co., Ltd., Tokyo
2 Tokyo Institute of Technology

Abstract. Recently, there have been many studies on constructing cryp-
tographic primitives that are secure even if some secret information leaks.
In this paper, we consider the problem of constructing public-key en-
cryption schemes that are resilient to leaking the randomness used in the
encryption algorithm. In particular, we consider the case in which public-
key encryption schemes are constructed from the KEM/DEM framework,
and the leakage of randomness in the encryption algorithms of KEM and
DEM occurs independently. For this purpose, we define a new security
notion for KEM. Then we provide a generic construction of a public-key
encryption scheme that is resilient to randomness leakage from any KEM
scheme satisfying this security. Also we construct a KEM scheme that
satisfies the security under the decisional Diffie-Hellman assumption.

1 Introduction

Recently, many studies have been devoted to construct encryption schemes that
are secure even if some of the secret information leaks [4, 7, 1, 11, 2, 3]. In [4, 7,
1, 11, 2], they mainly considered the case of leaking a secret key. In particular,
studies in [1, 11, 2] considered the case that any of the secret-key information
leaks, and the restriction is only the amount of the leaked information. This
leakage model captures many realistic attacks including side-channel attack and
cold-boot attack [8]. Naor and Segev [11] also studied the case of leaking the ran-
domness used in the key generation algorithm. They proved that their proposed
encryption scheme, which is resilient to the secret-key leakage, is also resilient
to the leakage of the randomness used in the key generation algorithm.

Bellare et al. [3] considered the case of leaking the randomness used in the
encryption algorithm. Their definition of leaking the randomness is different
from those of other studies of information leakage. They considered the case
that random strings are sampled from not a uniformly random distribution but
an entropically guaranteed distribution.

In this work, we investigate the possibility of constructing public-key en-
cryption schemes that are secure even if the randomness information used in the
encryption algorithm leaks. The restriction we consider is only the amount of
the leaked information.

First we define the security notions of public-key encryption in the presence of
the leakage of the randomness used in the encryption algorithm. The definitions

are similar to those of the secret-key leakage introduced in [1, 11]. We define two
randomness-leakage attacks, a priori randomness-leakage attack and a posteri-
ori randomness-leakage attack. In the a priori randomness-leakage attack, the
adversary can obtain the leakage information on the randomness before she re-
ceives a public key. In the a posteriori randomness-leakage attack, the adversary
can obtain the leakage information after receiving the public key. Then we show
that a secure public-key encryption scheme against a priori randomness-leakage
attack can be constructed from any secure public-key encryption scheme. This
is proved by a similar argument to the case of key leakage in [11]. However, for
the a posteriori randomness-leakage attack, we show that no public-encryption
scheme can achieve the security. This situation is contrast to the case of secret-
key leakage. Indeed, it is shown that a secure scheme for key leakage can be
constructed from any hash proof system [11]. The results are summarized in
Table 1, in which we compare the results of randomness leakage with that of key
leakage.

Table 1. Comparison between Key Leakage and Randomness Leakage.

Timing of leakage Key leakage Randomness leakage

Before receiving the public key IND-CPA PKE [11] IND-CPA PKE
After receiving the public key Hash Proof Systems [11] Impossible
After receiving the ciphertext Impossible [1] Impossible

Next, we focus on public-key encryption schemes based on the framework
of key-encapsulation mechanism (KEM) and data-encapsulation mechanism
(DEM). Since no scheme can achieve the randomness-leakage resilience if the
leakage occurs after the adversary receives the public key, we restrict the way
of leakage as follows. (1) The leakage of randomness used in KEM and that in
DEM occurs independently, and (2) the leakage of randomness used in DEM
occurs after the adversary selected two challenge messages. The situation of the
first condition arises when the computation of KEM and that of DEM are im-
plemented by two independent computer chips. The second condition is due to
some technical reason. Hence, removing the second condition can be considered
future work of this study. Regarding the leakage amount, we restrict the amount
of the randomness leakage only for the encryption of KEM, and not for DEM.
Namely, the adversary can learn the entire random bits used in the encryption
of DEM. Note that we allow an encryption algorithm of DEM to be randomized,
while it is usually deterministic.

To construct a public-key encryption scheme secure against randomness leak-
age attack, we define a new security notion for KEM. We call it the entropic
security against randomness-leakage attack. A KEM scheme is entropically se-
cure against randomness-leakage attack if there are fake public-keys such that
the distribution of real public-keys and that of fake public-keys are computa-
tionally indistinguishable, and if a fake key is used instead of a real key, the

symmetric key has high entropy even if the randomness leakage occurs. Then,
we provide a generic construction of a public-key encryption scheme that is re-
silient to randomness leakage from any KEM scheme that is entropically secure
against randomness-leakage attack.

Also we construct a KEM scheme that is entropically secure against
randomness-leakage attack under the decisional Diffie-Hellman (DDH) assump-
tion. The scheme is a simple variant of the ElGamal KEM scheme.

In Table 2, we summarize the results of information leakage on public-key
encryption schemes. Note that the scheme proposed in this work is the first
scheme that achieves the security against randomness leakage after receiving the
public key.

Table 2. Information Leakage in Public-Key Encryption Schemes.

References Leakage information Assumption Timing of leakage

[1] Secret key LWE After receiving the public key
[11] Secret key HPS After receiving the public key
[3] Randomness Lossy TDF Before receiving the public key

This work Randomness DDH After receiving the public key

Related Work. The key-leakage security in which the adversary can learn any
information on the secret key was first formalized by Akavia, Goldwasser, and
Vaikuntanathan [1]. In addition, they showed that Regev’s lattice-based scheme
is resilient to the key leakage. Naor and Segev [11] extended the notion of [1], and
they proposed a general construction of public-key encryption schemes that are
resilient to key leakage based on universal hash proof systems. In addition, they
applied the notion of leakage to the randomness used in the key-generation algo-
rithm. Alwen, Dodis, and Wichs [2] constructed varieties of key-leakage resilient
public-key cryptosystems, such as identification, signature, and authenticated
key agreement. Recently, Halevi and Lin [9] have studied a realizable security of
public-key encryption schemes in which the leakage occurs after the adversary
receives the ciphertext.

There are several studies related to the leakage of the randomness used in
the encryption algorithm. Bellare et al. [3] considered the situation in which the
randomness used in the encryption algorithm is not uniformly random, but is
entropically guaranteed. They introduced a security notion such that even if the
randomness is not chosen uniformly at random, the scheme is secure as long as
the joint distribution of the message and the randomness has high entropy. Note
that the distribution of the randomness is chosen without using the information
on the public key, which is different from the setting of our work.

Kamara and Katz [10] studied another type of randomness leakage in
symmetric-key encryption. In their setting, the adversary can control the ran-
domness of the ciphertext except that of the challenge ciphertext.

There are other formalization of information leakage. Dizembowski and
Pietrzak [7] considered the key leakage under the assumption that only the
computation leaks information, and constructed leakage-resilient stream-ciphers.
Dodis, Tauman Kalai, and Lovett [6] studied symmetric-key encryption schemes
under key-leakage attack. They considered the leakage of the form f(sk), where
sk is the secret key and f is any exponentially-hard one-way function, and do
not restrict the entropy of the secret key.

2 Preliminaries

In this section, we present notions, definitions, and tools that are used in our
constructions. Let n be the security parameter on all of the schemes in this paper,
and Ut the uniform distribution over {0, 1}t, where t ∈ N. For a distribution X,
we write x← X to indicate that x is chosen according to X. We say an algorithm
is PPT if it runs by a probabilistic polynomial-time Turing machine.

2.1 The Decisional Diffie-Hellman Assumption

Let G(1n) be a group sampling algorithm which, on input 1n, outputs a tuple of
G = (p,G, g) where p is a prime, G is a group of order p, and g is a generator of
G.

The decisional Diffie-Hellman (DDH) assumption is that the ensembles
{(G, g1, g2, g

r
1, g

r
2)}n∈N and {(G, g1, g2, g

r1
1 , gr2

2)}n∈N are computationally indis-
tinguishable, where G← G(1n), the elements g1, g2 are randomly selected gener-
ator of G, and r, r1, r2 ∈ Zp are chosen independently and uniformly at random.

2.2 Randomness Extraction

The statistical distance between two random variables X and Y over a finite
domain Ω is ∆(X, Y) := 1

2

∑
ω∈Ω |Pr[X = ω]− Pr[Y = ω]|. We say that two

variables are ε-close if their statistical distance is at most ε. The min-entropy of
a random variable X is H∞(X) := − log(maxx Pr[X = x]). The min-entropy is
a standard notion of entropy used in cryptography since it measures the worst
case predictability of X. We also use the average min-entropy defined as follows:

H̃∞(X|Y) := − log
(
Ey←Y

[
2−H∞(X|Y =y)

])
.

The average min-entropy represents the optimal predictability of X, given knowl-
edge of Y . The following lemma was proved by Dodis, Ostrovsky, Reyzin, and
Smith [5], which will be used in this paper.

Lemma 1. Let r ∈ R. If Y has 2r possible values and Z is any random variable,
then for a random variable X, H̃∞(X|(Y, Z)) ≥ H∞(X|Z)− r.

We use a strong randomness extractor as a main tool in our constructions.
The following definition naturally generalizes the standard definition of strong
extractors to the setting of the average min-entropy.

Definition 1. A function Ext : {0, 1}k × {0, 1}t → {0, 1}m is an average-case
(n, ε)-strong extractor if for all the pairs of random variables (X, I) such that
X ∈ {0, 1}k, and H̃∞(X|I) ≥ n, it holds that

∆ ((Ext(X,Ut), Ut, I), (Um, Ut, I)) ≤ ε.

Dodis et al. proved the following variant of the leftover hash lemma. Any family
of pairwise independent hash functions is indeed an average-case strong extrac-
tor [5].

Lemma 2. Let X,Y be random variables such that X ∈ {0, 1}n and
H̃∞(X|Y) ≥ k. Let H be a family of pairwise independent hash functions from
{0, 1}n to {0, 1}m. Then for h ∈ H chosen uniformly at random, it holds that

∆((Y, h, h(X)), (Y, h, Um)) ≤ ε

as long as m ≤ k − 2 log(1/ε).

2.3 The KEM/DEM Framework

We present the framework of key-encapsulation mechanism (KEM) and data-
encapsulation mechanism (DEM). The KEM/DEM paradigm is a simple way of
constructing efficient and practical public-key encryption schemes. KEM is used
as public-key encryption used for encrypting a random symmetric key K together
with its ciphertext. The symmetric key is used for encrypting the message using
DEM. A formal definition of KEM and DEM is as follows:

Definition 2. Key encapsulation mechanism is a tuple of PPT algorithms
KEM = (KEM.Gen,KEM.Enc, KEM.Dec) such that

KEM.Gen : On input a security parameter 1n, output a pair of keys (pk, sk).
KEM.Enc : On input a public key pk and a random string r from some underlying

randomness space, output a ciphertext c and a symmetric key K.
KEM.Dec : On input a secret key sk and a ciphertext c, output a symmetric key

K.

It is required that for any (pk, sk)← KEM.Gen(1n) and any random string r,

KEM.Dec(sk, c) = K,

where (c,K)← KEM.Enc(pk, r).

Definition 3. Data encapsulation mechanism is a tuple of PPT algorithms
DEM = (DEM.Gen, DEM.Enc, DEM.Dec) such that

DEM.Gen : On input a security parameter 1n, output a symmetric key K.
DEM.Enc : On input a symmetric key K, a message m, and a random string r,

output a ciphertext c.
DEM.Dec : On input a symmetric key K and a ciphertext c, output a message

m.

Note that we define DEM.Enc as a randomized algorithm, while it is usually
deterministic. We provide a KEM/DEM construction in Section 5 in which the
encryption algorithm of DEM is randomized.

In this paper, we only consider the case in which a public-key encryption
scheme is constructed from KEM/DEM paradigm. KEM is used for exchanging
a symmetric key K. The message is encrypted using DEM with the symmetric
key K. Thus, a public-key encryption scheme can be written as a tuple of five
PPT algorithms (KEM.Gen, KEM.Enc, KEM.Dec,DEM.Enc, DEM.Dec).

3 Randomness Leakage in Public-Key Encryption

Akavia et al. [1] introduced the security of public-key encryption schemes in
the presence of secret-key leakage. We formalize the security in the presence of
randomness leakage based on their notion. In particular, we consider the leakage
of the randomness used in the encryption algorithm.

We define two randomness-leakage attacks, a priori randomness-leakage at-
tack and a posteriori randomness-leakage attack. In the a priori randomness-
leakage attack, the adversary can have access to the leakage oracle before she
obtains a public key. In the a posteriori randomness-leakage attack, the adversary
can have access to the leakage oracle after she obtains the public key.

3.1 A Priori Randomness-Leakage Attack

Let Π = (Gen,Enc, Dec) be a public-key encryption scheme, and `(n) the length
of the randomness used in the encryption algorithm Enc, where n is the security
parameter. The leakage oracle, denoted by RandLeak(r), takes as input a function
f : {0, 1}`(n) → {0, 1}∗ and outputs f(r), where r is the randomness used in Enc.
We call the adversary A is an a priori λ(n)-randomness-leakage adversary if the
sum of the output length of RandLeak that A queries is at most λ(n), and f
is chosen by A before she receives the public key. Note that, although we may
consider adaptive leakage, in which the adversary can access to the leakage oracle
adaptively, it does not affect our definitions of randomness leakage as discussed
in [1].

Definition 4. A public-key encryption scheme Π = (Gen, Enc,Dec) is a pri-
ori λ(n)-randomness-leakage resilient if for any PPT a priori λ(n)-randomness-
leakage adversary A = (A1, A2, A3), it holds that

Advapriori
Π,A (n) :=

∣∣∣Pr
[
ExptaprioriΠ,A (0) = 1

]
− Pr

[
ExptaprioriΠ,A (1) = 1

]∣∣∣
is negligible in n, where the experiment ExptaprioriΠ,A (b) is defined as follows.

1. (pk, sk)← Gen(1n).
2. Choose r ← U`(n).
3. st1 ← A

RandLeak(r)
1 (1n).

4. (m0,m1, st2)← A2(pk, st1) such that |m0| = |m1|.
5. c← Enc(pk, mb, r).
6. b′ ← A3(c, st2).
7. Output b′.

We provide a construction of public-key encryption scheme that is resilient
to a priori randomness-leakage attack based on any IND-CPA secure scheme.
The construction is similar to that of [1] for the case of the secret-key leakage.

Construction 5 Let Π = (Gen, Enc, Dec) be a public-key encryption scheme,
`(n) the length of the random string used in Enc, and Ext : {0, 1}k(n) ×
{0, 1}t(n) → {0, 1}`(n) an average-case extractor. The scheme Π∗ =
(Gen∗,Enc∗, Dec∗) is defined as follows.

Gen∗: On input 1n, choose s← Ut(n), compute (pk, sk)← Gen(1n), and output
PK = (pk, s) and SK = sk.

Enc∗: On input a message m and a public key PK = (pk, s), choose r ← Uk(n)

and output Enc(pk, m,Ext(r, s)).
Dec∗: On input a ciphertext c and a secret key SK = sk, output Dec(sk, c).

Theorem 1. Let Π = (Gen, Enc, Dec) be an IND-CPA secure public-key en-
cryption scheme and Ext : {0, 1}k(n) × {0, 1}t(n) → {0, 1}m(n) an average-case
(k(n)− λ(n), ε(n))-strong extractor for some negligible function ε(n). Then, the
encryption scheme Π∗ is a priori λ(n)-randomness-leakage resilient.

Proof. We show that for any adversary A, there exists an adversary A′ such that

Advapriori
Π∗,A(n) ≤ AdvCPA

Π,A′(n) + 2ε(n),

where the AdvIND−CPA
Π,A′ (n) the advantage of A′ in the IND-CPA game with Π.

Consider the following experiment ExptΠ,A(b):

1. (pk, sk) ← Gen(1n), choose r ← Uk(n), s ← Ut(n), and z ← Um(n). Let
PK = (pk, s) and SK = sk.

2. st1 ← A
RandLeak(r)
1 (1n).

3. (m0,m1, st2)← A2(PK, st1) such that |m0| = |m1|.
4. c← Enc(pk, mb, z).
5. b′ ← A3(c, st2).
6. Output b′.

From Definition 4 and the triangle inequality, it follows that

Advapriori
Π∗,A(n) =

∣∣∣Pr
[
ExptaprioriΠ∗,A(0) = 1

]
− Pr

[
ExptaprioriΠ∗,A(1) = 1

]∣∣∣
≤

∣∣∣Pr
[
ExptaprioriΠ∗,A(0) = 1

]
− Pr

[
ExptΠ,A(0) = 1

]∣∣∣
+

∣∣Pr
[
ExptΠ,A(0) = 1

]
− Pr

[
ExptΠ,A(1) = 1

]∣∣
+

∣∣∣Pr
[
ExptΠ,A(1) = 1

]
− Pr

[
ExptaprioriΠ∗,A(1) = 1

]∣∣∣ .

The experiment ExptΠ,A(b) is identical to the experiment ExptaprioriΠ∗,A(b), except
for the fact that Enc uses a truly random input z, not Ext(r, s). Note that, from
Lemma 1, given the information of f(r), the average min-entropy of r is at least
(k − λ). Therefore the average-case strong extractor guarantees that the statis-
tical distance between the view of the adversary in these two experiments is at
most ε(n). This implies that

∣∣∣Pr
[
ExptΠ,A(b) = 1

]
− Pr

[
ExptaprioriΠ∗,A,F (b) = 1

]∣∣∣ ≤
ε(n) for b ∈ {0, 1}. Since ExptΠ,A(b) is the same as the IND-CPA experi-
ment ExptIND−CPA

Π,A (b), we can construct the IND-CPA adversary A′ for which∣∣Pr
[
ExptΠ,A(0) = 1

]
− Pr

[
ExptΠ,A(1) = 1

]∣∣ ≤ AdvCPA
Π,A′(n).

3.2 A Posteriori Randomness-Leakage Attack

In this section, we define a posteriori randomness-leakage attack. Consequently,
we show that there is no public-key encryption scheme that is a posteriori
randomness-leakage resilient even if the leakage information is only one bit.

We define the security in a similar way as in Definition 4. An adversary A is
called a posteriori λ(n)-randomness-leakage adversary if the sum of the output
lengths of RandLeak is at most λ(n), and a leakage function f is chosen by A
before receiving the challenge ciphertext.

Definition 6. A public-key encryption scheme Π = (Gen, Enc, Dec) is a pos-
teriori λ(n)-randomness-leakage resilient if for any PPT a posteriori λ(n)-
randomness-leakage adversary A = (A1, A2), it holds that

Advaposteriori
Π,A (n) :=

∣∣∣Pr
[
Exptaposteriori

Π,A (0) = 1
]
− Pr

[
Exptaposteriori

Π,A (1) = 1
]∣∣∣

is negligible in n. The experiment Exptaposteriori
Π,A (b) is defined as follows:

1. (pk, sk)← Gen(1n).
2. Choose r ← U`(n).
3. (m0,m1, st1)← A

RandLeak(r)
1 (pk) such that |m0| = |m1|.

4. c← Enc(pk, mb, r).
5. b′ ← A2(c, st1).
6. Output b′.

We show that no public-key encryption scheme achieves Definition 6. We con-
struct an adversary A′ that breaks the a posteriori randomness-leakage resilience,
where λ(n) = 1. The strategy of A′ is as follows. First, A′ makes two challenge
messages m0,m1 arbitrary, and randomly chooses 1 ≤ i ≤ d(n), where d(n) is
the maximum length of the possible ciphertexts. Then A′ asks the leakage oracle
with f(·) = {the i-th bit of the output of Enc(pk, m1, ·)}. After A′ receives the
challenge ciphertext c, she checks whether the i-th bit of c and f(r) are the same
or not. If they are, she outputs 1, and otherwise outputs 0. There exists at least
one position where the ciphertext of m0 and that of m1 are different because
of the correctness of the scheme. If i is such a position, then A′ can correctly

predict the challenge message. The probability it occurs is at least 1/d(n), which
is a lower bound of the probability Pr

[
Exptaposteriori

Π,A′ (0) = 0
]
. On the other hand,

Pr
[
Exptaposteriori

Π,A′ (1) = 1
]

= 1. Thus,

Advaposteriori
Π,A (n) =

∣∣∣Pr
[
Exptaposteriori

Π,A (0) = 1
]
− Pr

[
Exptaposteriori

Π,A (1) = 1
]∣∣∣

=
∣∣∣(1− Pr

[
Exptaposteriori

Π,A′ (0) = 0
])
− 1

∣∣∣
≥ 1

d(n)
,

which is non-negligible.

4 Randomness Leakage in KEM/DEM

In this section, we define randomness-leakage attack for KEM/DEM-based
public-key encryption schemes. As discussed in Section 3, there is no public-key
encryption that achieves a posteriori randomness-leakage. Therefore, we restrict
the leakage of randomness such that the leaking of random bits used in KEM.Enc
and DEM.Enc occur independently. Also when the adversary chooses two chal-
lenge messages, she is not allowed to access to the leakage information of random
bits in DEM.Enc.

We describe the formal definition of the randomness-leakage attack in
KEM/DEM. The randomness-leakage oracle for KEM.Enc, denoted by Leak,
takes as input a function f : R → {0, 1}∗ and outputs f(r), where R is the
domain of the randomness used in KEM.Enc and r is the random bits generated
in KEM.Enc. We restrict the function f to be efficiently computable. The leakage
oracle for DEM.Enc, denoted by Leak′, takes as input a function g : R′ → {0, 1}∗
and output g(r′), where R′ is the domain of the randomness used in DEM.Enc
and r′ is the random bits generated in DEM.Enc. We restrict the amount of
the leaked bits for r but not for r′. Namely, the adversary can learn the entire
random bits r′, which are generated in DEM.Enc. We call an adversary A is a
λ(n)-randomness-leakage adversary if the sum of the output length of Leak that
A queries is at most λ(n).

Definition 7. A public-key encryption scheme Π =
(KEM.Gen, KEM.Enc,KEM.Dec, DEM.Enc, DEM.Dec) is IND-CPA secure
against λ(n)-randomness-leakage attack if for any PPT λ(n)-randomness-
leakage adversary A = (A1, A2) it holds that,

AdvRandLeak
Π,A (n) :=

∣∣∣Pr[ExptRandLeak
Π,A (0) = 1]− Pr[ExptRandLeak

Π,A (1) = 1]
∣∣∣

is negligible in n, where ExptRandLeak
Π,A (b) is defined as follows.

1. (pk, sk)← KEM.Gen(1n).

2. Choose r ∈ R uniformly at random.
3. (c,K)← KEM.Enc(pk, r).
4. (m0,m1, st1)← A

Leak(r)
1 (pk, c) such that |m0| = |m1|.

5. Choose r′ ∈ R′ uniformly at random.
6. d← DEM.Enc(mb,K, r′).
7. b′ ← A

Leak′(r′)
2 (d, st1).

8. Output b′.

Note that the ciphertext c generated by KEM.Enc is given to the adversary
before she submits the challenge messages m0 and m1. This means the above
definition captures a stronger security than the standard KEM/DEM framework.
The randomness r′ in DEM.Enc leaks only after the adversary chose the challenge
messages.

pk

?

A

f�

f(r)

-

?

r

Leak

g�

g(r′)

-

?

r′

Leak′

�

(c, K)← KEM.Enc(pk, r)

c

- m0, m1

� DEM.Enc(mb, K, r′)

b′
?

Fig. 1. Experiment ExptRandLeak
Π,A (b).

5 Randomness-Leakage Resilient Schemes from
Entropically-Secure KEM

In this section, we first define a new security notion for KEM. Then, we construct
a public-key encryption scheme that is IND-CPA secure against randomness-
leakage attack from any KEM scheme satisfying this security.

For a KEM scheme, we require that the symmetric key K still has high
average min-entropy even if the adversary knows the public key pk, the cipher-
text c, and any partial information f(r) of the random string r. We consider
a distribution PK∗ that is computationally indistinguishable from the real dis-
tribution of pk, where pk is generated from the encryption algorithm of KEM.

Given pk∗ ∈ PK∗, c∗, and f(r), we require that K∗ has enough entropy, where
(c∗,K∗) is generated according to KEM.Enc(pk∗, r) and f is an arbitrary effi-
ciently computable function whose output length is restricted.

Definition 8. A KEM scheme (KEM.Gen, KEM.Enc,KEM.Dec) is κ(n)-
entropically secure against λ(n)-randomness-leakage attack if there exists an
efficiently samplable distribution PK∗ that is computationally indistinguishable
from the distribution {pk | (pk, sk)← KEM.Gen(1n)}, and

H̃∞(K∗|pk∗, c∗, f(r)) ≥ κ(n),

where pk∗ ← PK∗, (c∗,K∗)← KEM.Enc(pk∗, r), and f is an arbitrary efficiently
computable function whose output length is at most λ(n).

We can construct a public-key encryption scheme secure against randomness-
leakage attack from any KEM scheme satisfying Definition 8.

Theorem 2. Let Ext : G × {0, 1}t → {0, 1}m be an average-
case (κ(n), ε(n))-strong extractor for some negligible function ε(n). Let
(KEM.Gen, KEM.Enc,KEM.Dec) be a KEM scheme that is κ(n)-entropically
secure against λ(n)-randomness-leakage attack. Then, the following scheme
Π∗ = (KEM.Gen∗, KEM.Enc∗,KEM.Dec∗, DEM.Enc∗, DEM.Dec∗) is a public-key
encryption scheme that is IND-CPA secure against λ(n)-randomness-leakage at-
tack.

Construction 9 The algorithms KEM.Gen∗, KEM.Enc∗, and KEM.Dec∗ are
the same as KEM.Gen, KEM.Enc, and KEM.Dec, respectively. The algorithms
DEM.Enc∗, DEM.Dec∗ are defined as follows.

DEM.Enc∗: On input a symmetric key K and a message M ∈ {0, 1}m, choose
r′ ∈ {0, 1}t uniformly at random. Output the ciphertext

d = (Ext(K, r′)⊕M, r′).

DEM.Dec∗ On input a symmetric key K and a ciphertext d = (d1, d2), output
the message

M = Ext(K, d2)⊕ d1.

Proof (Proof of Theorem 2). We define the experiments ExptRandLeak∗

Π∗,A (b) and
ExptΠ∗,A(b) for b ∈ {0, 1} as follows.

ExptRandLeak∗

Π∗,A (b):

1. Choose pk∗ from PK∗, where PK∗ is the distribution defined in Definition 8.
2. Choose r ∈ R uniformly at random, where R is the domain of the randomness

used in KEM.Enc∗.
3. (c∗,K∗)← KEM.Enc∗(pk∗, r).
4. (m0,m1, st1)← A

Leak(r)
1 (pk∗, c∗) such that |m0| = |m1|.

5. Choose r′ ∈ R′ uniformly at random, where R′ is the domain of the random-
ness used in DEM.Enc∗.

6. d← DEM.Enc∗(mb,K
∗, r′).

7. b′ ← A
Leak′(r′)
2 (d, st1).

8. Output b′.

ExptΠ∗,A(b):

1. Choose pk∗ from PK∗.
2. Choose r ∈ R uniformly at random.
3. (c∗,K∗)← KEM.Enc∗(pk∗, r).
4. (m0,m1, st1)← A

Leak(r)
1 (pk∗, c∗) such that |m0| = |m1|.

5. Choose r′ ∈ R′ uniformly at random.
6. Choose r∗ ← Um, and set d = (r∗ ⊕mb, r

′).
7. b′ ← A

Leak′(r′)
2 (d, st1).

8. Output b′.

Using the triangle inequality, for any adversary A it holds that

AdvRandLeak
Π∗,A (n)

=
∣∣∣Pr[ExptRandLeak

Π∗,A (0) = 1]− Pr[ExptRandLeak
Π∗,A (1) = 1]

∣∣∣
≤

∣∣∣Pr[ExptRandLeak
Π∗,A (0) = 1]− Pr[ExptRandLeak∗

Π∗,A (0) = 1]
∣∣∣ (1)

+
∣∣∣Pr[ExptRandLeak∗

Π∗,A (0) = 1]− Pr[ExptΠ∗,A(0) = 1]
∣∣∣ (2)

+
∣∣Pr[ExptΠ∗,A(0) = 1]− Pr[ExptΠ∗,A(1) = 1]

∣∣ (3)

+
∣∣∣Pr[ExptΠ∗,A(1) = 1]− Pr[ExptRandLeak∗

Π∗,A (1) = 1]
∣∣∣ (4)

+
∣∣∣Pr[ExptRandLeak∗

Π∗,A (1) = 1]− Pr[ExptRandLeak
Π∗,A (1) = 1]

∣∣∣ . (5)

We first show an upper bound on the terms (1) and (5). Note that, the
difference between ExptRandLeak

Π∗,A (b) and ExptRandLeak∗

Π∗,A (b) is only the distribu-
tion of choosing public keys. Since the distribution PK∗ and {pk | (pk, sk) ←
KEM.Gen(1n)} are computationally indistinguishable, there is some negligible
function AdvComp(n) that is an upper bound on both (1) and (5).

Second, we show an upper bound on (2) and (4). The difference between
ExptΠ∗,A(b) and ExptRandLeak∗

Π∗,A (b) is only the mask string for mb, which is
Ext(K∗, r′) and r∗, respectively. From the assumption of Theorem 2, we have that
H̃∞(K∗|pk∗, c∗, f(r)) ≥ κ(n). Since r′ is chosen from Ut and Ext is an average-
case (κ(n), ε(n))-strong extractor, the adversary can distinguish the distribution
between (Ext(K∗, r′), r′, pk∗, c∗, f(r)) and (r∗, r′, pk∗, c∗, f(r)) with probability
at most ε(n). Thus, ε(n) is an upper bound on both (2) and (4).

Finally, we show the term (3) is equal to zero. The difference between
ExptΠ∗,A(0) and ExptΠ∗,A(1) is the message mb for b ∈ {0, 1}. Since mb is masked

by a uniformly random string r∗, the experiments ExptΠ∗,A(0) and ExptΠ∗,A(1)
are the same. Thus, (3) is equal to zero.

Therefore, we have that AdvRandLeak
Π∗,A (n) ≤ 2(AdvComp(n) + ε(n)), which is

negligible in n.

6 The Construction of Entropically-Secure KEM

In this section, we provide a construction of entropically secure KEM based on
the DDH assumption.

Construction 10 Let G be a group of prime order p, and λ(n) a leakage pa-
rameter. Then, the KEM scheme (KEM.Gen, KEM.Enc,KEM.Dec) is defined as
follows.

KEM.Gen : On input a security parameter 1n, choose x1 ∈ Zp and g1, g2 ∈ G
uniformly at random. Output a pair of keys (pk, sk) as

pk = (g1, g2, g
x1
1 , gx1

2), sk = x1.

KEM.Enc : On input a public key pk = (g1, g2, pk1, pk2), choose r1, r2 ∈ Zp

uniformly at random, and output the ciphertext c and the symmetric key K
as

c = gr1
1 gr2

2 , K = (pk1)r1(pk2)r2 .

KEM.Dec : On inputs a secret key sk and a ciphertext c, output the symmetric
key as

K = csk.

The correctness of the scheme immediately follows since if c = gr1
1 gr2

2 , pk1 = gx1
1

and pk2 = gx1
2 , then K = (pk1)r1(pk2)r2 = (gx1

1)r1(gx1
2)r2 = (gr1

1 gr2
2)x1 = cx1 .

Next, we show the security of the scheme.

Theorem 3. The KEM scheme defined in Construction 10 is (log p − λ(n))-
entropically secure against λ(n)-randomness-leakage attack under the DDH as-
sumption.

Proof. We need to show that there exists a distribution PK∗ such that
PK∗ is computationally indistinguishable from the distribution {pk | pk ←
KEM.Enc(1n)}, and that H̃∞(K∗|pk∗, c∗, f(r∗)) ≥ log p − λ(n), where pk∗ ←
PK∗, (c∗,K∗)← KEM.Enc(pk∗, r), and f is an arbitrary efficiently-computable
function whose output length is at most λ(n).

We define PK∗ as follows.

PK∗: Choose x1, x2 ∈ Zp with x1 6= x2 and g1, g2 ∈ G uniformly at random.
Then output pk∗ = (g1, g2, g

x1
1 , gx2

2).

It follows from the DDH assumption that the distribution PK∗ and the distri-
bution {pk | pk ← KEM.Enc(1n)} = {(g1, g2, g

x1
1 , gx1

2) |x1 ∈ Zp, g1, g2 ∈ G} are
computationally indistinguishable.

Next, we show that H̃∞(K∗|pk∗, c∗, f(r∗)) ≥ log p − λ(n). If pk∗ is chosen
from PK∗, then the distribution {K∗ | (c∗,K∗)← KEM.Enc(pk∗, r)} is equal to
the following distribution K∗.

K∗: Choose x1, x2, r1, r2 ∈ Zp with x1 6= x2 and g1, g2 ∈ G uniformly at random,
and compute c∗ = gr1

1 gr2
2 and K∗ = (gx1

1)r1(gx2
2)r2 . Then output K∗.

We show that, given pk∗ and c∗, the distribution K∗ is the uniform dis-
tribution on G. To prove this fact, we show that, given pk∗ and c∗, for any
K∗ ∈ G, there is a unique pair (r1, r2) ∈ Zp × Zp that satisfies gr1

1 gr2
2 = c∗

and (gx1
1)r1(gx2

2)r2 = K∗. We can write g2 = gα
1 , c∗ = gy1

1 , and K∗ = gy2
1

for some α, y1, y2 ∈ Zp. Then it holds that c∗ = gy1
1 = gr1+αr2

1 and that
K∗ = gy2

1 = gx1r1+αx2r2
1 . Hence, we have two equations y1 = r1 + αr2 and

y2 = x1r1 + αx2r2. Since x1 6= x2 and α 6= 0 (otherwise, g2 is not a generator of
G), there is a unique solution (r1, r2) of these equations.

From the above, we have that H∞(K∗|pk∗, c∗) = log p. Then it follows from
Lemma 1 that H̃∞(K∗|pk∗, c∗, f(r)) ≥ H∞(K∗|pk∗, c∗)− λ(n) = log p− λ(n).

In summary, from Theorems 2 and 3, we can construct a public-key encryp-
tion scheme secure against randomness-leakage attack.

Theorem 4. Let G be a group of prime order p, and Ext : G × {0, 1}t →
{0, 1}m an average-case (log p − λ(n), ε(n))-strong extractor for some negli-
gible function ε(n). Then, the following public-key encryption scheme Π =
(KEM.Gen, KEM.Enc,KEM.Dec, DEM.Enc, DEM.Dec) is IND-CPA secure against
λ(n)-randomness-leakage attack under the DDH assumption.

KEM.Gen : On input a security parameter 1n, choose x1 ∈ Zp and g1, g2 ∈ G
uniformly at random, and output the public key pk = (g1, g2, g

x1
1 , gx1

2) and
the secret key sk = x1.

KEM.Enc : On input a public key pk = (g1, g2, pk1, pk2), choose r1, r2 ∈ Zp

uniformly at random, and output the ciphertext c = gr1
1 gr2

2 and the symmetric
key K = (pk1)r1(pk2)r2 .

KEM.Dec : On inputs a secret key sk and a ciphertext c, output the symmetric
key K = csk.

DEM.Enc : On input a symmetric key K and a message M ∈ {0, 1}m, choose
r′ ∈ {0, 1}t uniformly at random, and output the ciphertext d = (Ext(K, r′)⊕
M, r′).

DEM.Dec : On input a symmetric key K and a ciphertext d = (d1, d2), output
the message M = Ext(K, d2)⊕ d1.

Acknowledgments

This work was supported in part by NTT Information Sharing Platform Labo-
ratories and Grant-in-Aid for Scientific Research.

References

1. A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits
and cryptography against memory attacks. In O. Reingold, editor, Theory of
Cryptography, 6th Theory of Cryptography Conference, TCC 2009, volume 5444 of
Lecture Notes in Computer Science, pages 474–495, New York, USA, March 2009.
Springer-Verlag.

2. J. Alwen, Y. Dodis, and D. Wichs. Leakage-resilient public-key cryptography in
the bounded-retrieval model. In Advances in Cryptology – CRYPTO 2009, Lecture
Notes in Computer Science, pages 36–54, Santa Barbara, California, USA, August
2009. Springer.

3. M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Schacham, and
S. Yilek. Hedged public-key encryption: How to protect against bad randomness.
In M. Matsui, editor, Advances in Cryptology – ASIACRYPT 2009, volume 5912
of Lecture Notes in Computer Science, pages 232–249, Tokyo, Japan, December
2009. Springer.

4. R. Canneti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-resilient
functions and all-or-nothing transforms. In B. Preneel, editor, Advances in Cryp-
tology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science,
pages 453–469, Bruges, Belgium, May 2000. Springer-Verlag.

5. Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to gener-
ate strong keys from biometrics and other noisy data. SIAM J. Comput., 38(1):97–
139, 2008.

6. Y. Dodis, Y. Tauman Kalai, and S. Lovett. On cryptography with auxiliary input.
In M. Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009,
pages 621–630. ACM, 2009.

7. S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In 49th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2008), pages 293–
302, Philadelphia, PA, USA, October 2008. IEEE Computer Society.

8. J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calan-
drino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we remember: Cold
boot attacks on encryption keys. In USENIX Security Symposium, pages 45–60,
2008.

9. S. Halevi and H. Lin. After-the-fact leakage in public-key encryption. In Y. Ishai,
editor, TCC, volume 6597 of Lecture Notes in Computer Science, pages 107–124.
Springer, 2011.

10. S. Kamara and J. Katz. How to encrypt with a malicious random number gen-
erator. In K. Nyberg, editor, FSE, volume 5086 of Lecture Notes in Computer
Science, pages 303–315, Lausanne, Switzerland, February 2008. Springer-Verlag.

11. M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In
Advances in Cryptology – CRYPTO 2009, Lecture Notes in Computer Science,
pages 18–35, Santa Barbara, California, USA, August 2009. Springer.

