
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.3 MARCH 2015
853

PAPER

Post-Challenge Leakage Resilient Public-Key Cryptosystem in Split
State Model

Eiichiro FUJISAKI†a), Akinori KAWACHI††, Ryo NISHIMAKI†, Keisuke TANAKA††,
and Kenji YASUNAGA†††, Members

SUMMARY Leakage resilient cryptography is often considered in the
presence of a very strong leakage oracle: An adversary may submit ar-
bitrary efficiently computable function f to the leakage oracle to receive
f (x), where x denotes the entire secret that a party possesses. This model
is somewhat too strong in the setting of public-key encryption (PKE). It
is known that no secret-key leakage resilient PKE scheme exists if the ad-
versary may have access to the secret-key leakage oracle to receive only
one bit after it was given the challenge ciphertext. Similarly, there exists no
sender-randomness leakage resilient PKE scheme if one-bit leakage occurs
after the target public key was given to the adversary. At TCC 2011, Halevi
and Lin have broken the barrier of after-the-fact leakage, by proposing the
so-called split state model, where a secret key of a party is explicitly divided
into at least two pieces, and the adversary may have not access to the entire
secret at once, but each divided pieces, one by one. In the split-state model,
they have constructed post-challenge secret-key leakage resilient CPA se-
cure PKEs from hash proof systems, but the construction of CCA secure
post-challenge secret-key leakage PKE has remained open. They have also
remained open to construct sender-randomness leakage PKE in the split
state model. This paper provides a solution to the open issues. We also
note that the proposal of Halevi and Lin is post-challenge secret-key leak-
age CPA secure against a single challenge ciphertext; not against multiple
challenges. We present an efficient generic construction that converts any
CCA secure PKE scheme into a multiple-challenge CCA secure PKE that
simultaneously tolerates post-challenge secret-key and sender-randomness
leakage in the split state model, without any additional assumption. In ad-
dition, our leakage amount of the resulting schemes is the same as that of
Halevi and Lin CPA PKE, i.e., (1/2 + γ)�/2 where � denotes the length
of the entire secret (key or randomness) and γ denotes a universal (possi-
tive) constant less than 1/2. Our conversion is generic and available for
many other public-key primitives. For instance, it can convert any identity-
based encryption (IBE) scheme to a post-challenge master-key leakage and
sender-randomness leakage secure IBE.
key words: post-challenge (bounded) leakage, simultaneous secret-key and
sender-randomness leakage, CCA2 security for multiple messages

1. Introduction

Recently, leakage resilient cryptography has emerged (e.g.,
[1], [7], [13], [15], [19], [20], [22], [24]). One of major leak-
age modelings is of memory leakage attacks [1], which was
inspired by the attacks provided by Halderman et al. [16],
where they showed that it might not be difficult to retrieve
residual data from a computer’s memory. They demon-

Manuscript received October 22, 2014.
†The authors are with NTT Secure Platform Laboratories, NTT

Corporation, Musashino-shi, 180-8585 Japan.
††The authors are with Tokyo Institute of Technology, Tokyo,

152-8550 Japan.
†††The author is with Kanazawa University, Kanazawa-shi, 920-

1192 Japan.
a) E-mail: fujisaki.eiichiro@lab.ntt.co.jp

DOI: 10.1587/transfun.E98.A.853

strated that ordinary DRAMs lose their contents gradually
over a period of seconds when they lose power and suc-
ceeded in recovering a significant fraction of the bits of a
cryptographic key. Their attack suggests that an adversary
might be able to obtain any intermediate state of a crypto-
graphic task with secret information. Memory leakage at-
tacks capture this intuition, in which an adversary may have
(adaptively) access to leakage oracles with any efficiently
computable function f to obtain f (x) from the leakage ora-
cles, where x is the target secret. The only constraint is that
the total amount of f (x)’s is bounded by some parameter,
which is of course less than the size of secrets.

This model is, however, somewhat too strong in public-
key encryption (PKE). It is known that no secret-key leakage
resilient PKE scheme exists if the adversary may have ac-
cess to the leakage oracle and receive only one bit informa-
tion on the target secret-key after it saw the challenge cipher-
text — Consider the following strategy of an adversary in the
IND-CPA game in the presence of post-challenge memory
leakage. The adversary sets m0 = 0k and m1 = 1k, and
feeds them to the challenger, who encrypts either of them,
c = Encpk(mb), where b ∈ {0, 1}. After receiving c, the
adversary submits function f (·) := lsb(Dec(·)(c)) to obtain
f (sk), the least significant bit of the decryption of c under
sk. Finally he outputs f (sk) and wins, because b = f (sk).

Similarly, there exists no sender-randomness leakage
resilient PKE scheme if one-bit leakage occurs after the tar-
get public key is given to the adversary. In this case, the
adversary instead selects i ∈ {1, . . . , |c|} at random and sends
f (·) := [Encpk(m0; ·)](i), where [y](i) denotes the i-th bit of
string y. Since Encpk(m0; r) � Encpk(m1; r′) for any r, r′,
and any m0,m1, s.t. m0 � m1, the adversary can win the
game at least 1

2 (1 + 1
|c|), which is significant.

At TCC 2011, to bypass the impossibility results,
Halevi and Lin [17] proposed a new restricted bounded
memory leakage model, called the split state model. They
considered a special type of PKEs such that the secret key
consists of a pair of two strings, sk1 and sk2. The leakage
occurs on each split secret, not both of them at the same
time. An adversary may still have access to each leakage
oracle, Lski , adaptively. Since the adversary may adaptively
query, the adversary may submit a query function of sk1 to
Lsk1 , which depends on some leakage of sk2 that he has al-
ready obtained from Lsk2 . However, he cannot directly ask
with function F(·, ·) so that he can obtain F(sk1, sk2). In
this two-split model, Halevi and Lin presented a construc-

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

854
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.3 MARCH 2015

tion of post-challenge secret-key leakage resilient CPA se-
cure PKEs from hash proof systems, but they remained it
open how to construct CCA2 secure PKEs resilient to post-
challenge key leakage in the two split state model. Addi-
tionally, they also mentioned that it was an open problem
to find a way of simultaneously addressing secret-key and
sender-randomness leakage.

In addition, we note that although their scheme [17]
is post-challenge leakage resilient, it is not (proven) post-
challenge leakage resilient against multiple challenge ci-
phertexts.

1.1 Our Contribution

In this work, we present a generic construction of a CCA2
secure PKE scheme that is simultaneously resilient to post-
challenge secret-key and sender-randomness leakage from
any CCA2 secure PKE scheme in the two split state model,
which solves the open issues suggested by Halevi and Lin
[17]. The scheme of Halevi and Lin is post-challenge secret-
key leakage CPA secure against a single challenge cipher-
text; not against multiple challenges, whereas our resulting
scheme is CCA2 secure for multiple challenge messages si-
multaneously resilient to secret-key and sender-randomness
leakage. We start with an arbitrary CCA2 secure PKE and
convert it to the above post-challenge leakage secure scheme
without any additional assumption with leakage rates equiv-
alent to that of Halevi and Lin [17], that is, 1

2 (1
2 + γ), where

γ is a universal (positive) constant less than 1/2.
The idea behind the construction comes from the fol-

lowing observation: There is a two-source extractor Ext2 :
({0, 1}t)2 → {0, 1}m, such that its output is statistically in-
distinguishable from a truly random string within statistical
distance of 2−Ω(m) if x1, x2 ∈ {0, 1}t are mutually independent
and the entropy of each random string is at least (1/2−γ)t for
a universal constant 0 < γ < 1/2 [6]. We then show that the
output of the two-source extractor still looks random against
any unbounded adversary except for a negligible probabil-
ity, even if leakage occurs after the adversary is given the
output of two-source extractor, assuming that the statistical
distance of the two-source extractor is exponentially small.
We then replace inner random strings of the key genera-
tion algorithm with the outputs of the two-source extractors.
Similarly, we replace each random string used in encrypting
every message by a sender with the output of the two-source
extractors. If the starting PKE scheme is CCA2 secure, the
resulting scheme is also CCA2 secure for multiple challenge
messages and resilient simultaneously to post-challenge key
and randomness leakage. Our resulting scheme is resilient
to leakage of (1/2+ γ)�sk/2 and (1/2+ γ)�rd/2, where �sk is
the length of the entire secret key and �rd is the length of the
random string used in encrypting a message by a sender.

We note that the idea of employing the two-source
extractors resilient to post-challenge leakage is not new.
Halevi and Lin [17] implicitly use them, but we explicitly
define such an extractor as a module and apply it to crypto-
graphic primitives in a black-box way. By this, one could be

easily aware of the essence of the idea of [17] and notice a
smarter usage that can be applied to other applications.

1.2 Related Work

Micali and Reyzin [22] formalized a general framework for
modeling side-channel attacks. In their work, they assume
that there exists a leakage-free hardware and only the com-
putation leaks information. Inspired by [16], Akavia et
al. [1] formalized a stronger model of (key) memory leak-
age attacks, where no leakage-free hardware was assumed,
and showed that Regev’s lattice-based scheme [26] is secure
against memory leakage attacks. Naor and Segev [24] ex-
tended the notion of [1] and presented a general construction
of a PKE scheme resilient to key leakage from any univer-
sal hash proof system [9]. Due to the impossibility result
mentioned above, the resulting schemes are resilient only to
pre-challenge key leakage.

Several papers addressed leakage of randomness used
in an encryption algorithm. Bellare et al. [3] studied the se-
curity of PKE in the case that a random string used in the
encryption algorithm by a sender is not uniformly random.
However, leakage functions for the random string is inde-
pendent of public keys. Therefore, the work does not tackle
post-public key leakage.

Namiki et al. [23] addressed randomness leakage in the
KEM-DEM framework, in which an adversary may have
access to KEM’s leakage oracle only before he takes the
(whole) ciphertext, whereas he may have access to DEM’s
leakage oracle only after the ciphertext is given. Although
their model is clearly stronger than the split state model, the
resulting scheme bypasses the impossibility result in some
sense. We note that the resulting scheme is only CPA secure.

Birrel et al. [5] also studied the leakage of random
strings used for encryption in the context of randomness de-
pendent message security. They considered situations where
leakage functions can depend on the public key but the size
of the functions must be a priori bounded by some polyno-
mial.

Several variants of the split state model have recently
appeared, e.g., [10], [21], in order to bypass impossibility
results or intractably difficulty problems.

Independent of us, Zhang, Chow, and Cao [27]
presented post-challenge secret-key leakage PKE. Their
scheme is an extention of Halevi and Lin scheme [17],
by replacing entropic leakage-resilient CPA PKEs with
entropic leakage-resilient CCA ones. We note that
they only provided an inefficient instantiation of entropic
leakage-resilient CCA PKEs using general non-interactive
zero-knowledge proofs, which combines entropic leakage-
resilient CPA PKE with another CPA PKE in the Naor-Yung
double encryption paradigm.

FUJISAKI et al.: POST-CHALLENGE LEAKAGE RESILIENT PUBLIC-KEY CRYPTOSYSTEM IN SPLIT STATE MODEL
855

2. Definitions and Tools

(1) Notations.

For random variable or distribution D, we write y
R← D to

denote that y is randomly chosen from D according to its

distribution. For set S , x
U← S denotes that x is uniformly

chosen from S . y := z denotes the operation of assign-
ing the value of z to the variable y. We say that function
f : N → R is negligible in λ ∈ N if for every constant
c ∈ N there exists kc ∈ N such that f (λ) < λ−c for any
λ > kc. Hereafter, we use f = negl(λ) to mean that f is
negligible in λ. The statistical distance between two ran-
dom variables, X and Y , over a finite domain Ω is defined as
Δ(X, Y) � 1

2

∑
ω∈Ω | Pr[X = ω]−Pr[Y = ω]|. LetX = {Xλ}λ∈N

and Y = {Yλ}λ∈N denote two ensembles of random vari-
ables indexed by λ. For string x, |x| denotes the length of
x. We write PPT and DPT algorithms to denote probabilis-
tic polynomial-time and deterministic poly-time algorithms,
respectively.

Definition 2.1: We say that X andY are statistically indis-
tinguishable if Δ(Xλ, Yλ) = negl(λ).

Definition 2.2: We say that X and Y are computationally
indistinguishable if for every non-uniform PPT algorithm D,

|Pr[D(Xλ) = 1] − Pr[D(Yλ) = 1]| = negl(λ).
We write X c≈ Y (resp., X s≈ Y) to denote that X andY

are computationally (resp., statistically) indistinguishable.
Let U� denote the �-bit uniform distribution and E[X] de-
note the expectation of random variable X.

(2) Average Min-Entropy.

Let X and Y be random variables defined over domain
Ω. We define the min-entropy of random variable X as
H∞(X) � − log (maxx∈Ω Pr[X = x]). The notion of the av-
erage min-entropy is defined by Dodis, Ostrovsky, Reyzin,
and Smith [11]. The average min-entropy of random vari-
able X given random variable Y is interpreted as the remain-
ing unpredictability of X conditioned on the value of Y:

H̃∞(X|Y) � − log

⎛⎜⎜⎜⎜⎜⎜⎝ E
y
R←Y

[2−H∞(X|Y=y)]

⎞⎟⎟⎟⎟⎟⎟⎠
= − log

⎛⎜⎜⎜⎜⎜⎜⎝ E
y
R←Y

[
max

x
Pr[X = x|Y = y]

]⎞⎟⎟⎟⎟⎟⎟⎠.
Dodis et al. showed the following lemma:

Lemma 2.3 ([11]): When Y takes at most 2r possible val-
ues and Z is any random variable, then

H̃∞(X|(Y, Z)) ≥ H̃∞(X|Z) − r.

2.1 Two-Source Extractors

Our main technical tool is the so-called two-source extrac-
tors.

Definition 2.4 (Worst-case-2-source extractor): A function
Ext2 : {0, 1}t × {0, 1}t → {0, 1}m is a worst-case (v, ε)-
two-source extractor if for independent random variables
X, Y ∈ {0, 1}t, with H∞(X),H∞(Y) ≥ v, it holds that
Δ(Ext2(X, Y),Um) ≤ ε.
Definition 2.5 (Average-case 2-source extractor): A func-
tion Ext2 : {0, 1}t × {0, 1}t → {0, 1}m is an average-case
(v, ε)-two-source extractor if for all random variables X, Y ∈
{0, 1}t and Z, such that, conditioned on Z, X and Y are in-
dependent and have average min-entropy v, it holds that
Δ((Ext2(X, Y), Z), (Um, Z)) ≤ ε.

The next lemma follows from the same argument of
Lemma 2.3 in [11], which transforms a worst-case two-
source extractor to an average-case one.

Lemma 2.6: For any δ > 0, if Ext2 : {0, 1}t × {0, 1}t →
{0, 1}m is a worst-case (v− log(1/δ), ε)-two-source extractor,
then Ext2 is an average-case (v, ε+2δ)-two-source extractor.

The following theorem give us an explicit construction
of a (worst-case) two-source extractor.

Theorem 2.7 ([6]): There exists a universal constant γ < 1
2

and a polynomial-time computable (worst-case) (v, ε)-two-
source extractor Ext2 : {0, 1}t × {0, 1}t → {0, 1}m such that
v = (1/2 − γ)t, ε = 2−Ω(m) and m = Ω(t).

By Lemma 2.6, we immediately obtain an average two-
source extractor.

We note that Bourgain’s two-source extractor takes two
independent sources, each of with has min-entropy rate less
than 1/2, i.e., (1/2−γ), and outputs almost a uniform string.
The universal constant 0 < γ < 1/2 is determined by the
construction of [6]. We refer the reader to [25] for more
details.

We prepare the following useful lemmas.

Lemma 2.8: Let X, Y be random variables over Ω and f :
Ω → R be an arbitrary function. Then, Δ(f (X), f (Y)) ≤
Δ(X, Y).

Proof. The proof follows from the triangle inequality,
| Pr[f (X) = α] − Pr[f (Y) = α]| ≤ ∑ω∈ f −1(α) | Pr[X =

ω] − Pr[Y = ω]|. �

Lemma 2.9 ([12]): Let A, B be independent random vari-
ables. Consider a sequence V1, . . . ,Vm of random variables,
where Vi = φ (V1, . . . ,Vi−1,Ci) for some function φ, where
Ci is either A or B. Then A and B are independent condi-
tioned on V1, . . . ,Vm.

2.2 Public-Key Encryption

(3) PKE.

A public-key encryption (PKE) scheme PKE consists of
three algorithms PKE = (Gen,Enc,Dec) satisfying the fol-
lowing properties. The key-generation algorithm Gen is a
PPT algorithm that takes as input security parameter 1λ and

856
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.3 MARCH 2015

outputs a public/secret key pair, that is, (pk, sk)
R← Gen(1λ).

The public-key encryption algorithm Enc is a PPT algorithm
that takes as input pk and message m ∈ {0, 1}∗, picks up in-
ner randomness r, and outputs ciphertext c ← Enc(pk,m).
We write c := Enc(pk,m; r) when we want to clarify ran-
domness r used in Enc. The decryption algorithm Dec is
a deterministic algorithm that takes as input sk and c, and
outputs plaintext m′. That is, m′ := Dec(sk, c). It is required
that m = Dec(sk,Enc(pk,m)) for ∀λ ∈ N, ∀(pk, sk) ∈
Gen(1λ), and ∀m ∈ {0, 1}∗.

We use the standard security notion of IND-CCA2 [4]
for PKE as CCA security.

(4) Split-State PKE.

As Akavia, Goldwasser, and Vaikuntanathan [1] pointed
out, there is no secret-key leakage resilient PKE scheme if
the adversary is allowed to query leakage functions after it
can obtain the target ciphertext. To bypass the impossibility
result, we use the split state model [17].

We say that PKE = (Gen,Enc,Dec) has two-split-state
with respects to secret-key (resp. randomness) if there is a
partition that divides secret key sk (resp. randomness r) into
sk = (sk1, sk2) (resp. r = (r1, r2)). From now, two-split-
state PKE scheme denotes an arbitrary PKE scheme with
two-split states with respects to secret key and randomness.

Remark 2.10: We note that the decryption algorithm of
the split-state PKE schemes defined in [17] is syntactically
different from ours, where the decryption algorithm is a pair
of algorithms (Dec1,Dec2,Comb) such that Deci (i = 1, 2)
takes partial secret key ski and ciphertext c and outputs si,
andComb takes s1, s2 and ciphertext c, and outputs message
m. To tailor ours to the original one, we simply define Deci

and Comb such that Deci is a dummy algorithm that takes
(ski, c) and outputs si := ski and Comb takes (s1, s2, c) and
outputs Dec(sk, c).

2.3 Post-Challenge Key and Randomness Leakage Secu-
rity for Split-State PKE

We now model post-challenge secret-key and sender-
randomness leakage CCA security for split-state PKE
schemes, in the multiple challenge messages setting, in the
split state model. In this model, the leakage occurs on each
divided secret one by one, not both of them at the same time.
We note that the adversary can still obtain leakage related to
both sk1 and sk2, because leakage query function fs on sk2

may depend on leakage on sk1. So does randomness leak-
age.

We write Ls to denote the leakage oracle on secret-key
that takes query (i, fs), where i ∈ {1, 2} and fs is an effi-
ciently computable function, and returns fs(ski). Similarly,
we writeLr to denote the leakage oracle on randomness that
takes query (i, fr), where i ∈ {1, 2} and fr is an efficiently
computable function, and returns fr(ri).

We consider the following game between the chal-
lenger and adversaryA.

1. The challenger runs (pk, sk) ← Gen(1λ) where sk =
(sk1, sk2) and feeds pk toA.

2. (Pre-Challenge Queries) A submits a polynomial
number of following queries:

• (Secret-Key Leakage Query) When A submits
(i, fs) with i ∈ {1, 2} to Lsk, the challenger replies
with fs(ski).

• (Decryption Query) When A submits ciphertext
c to the decryption oracle Dec(sk, ·), the chal-
lenger replies with Dec(sk, c).

3. (�-Randomness-Dependent Message) A outputs
polynomial (in λ) �. The challenger then chooses � in-
dependent random strings, r = (r(1), . . . , r(�)), where
r(k) = (r(k)

1 , r
(k)
2). We note that random string r(k) is later

used to encrypt challenge message m(k)
b . A now sub-

mits a polynomial number of following queries:

• (Secret-Key Leakage Query) When A submits
(i, fs) with i ∈ {1, 2} to Ls, the challenger replies
with fs(ski).

• (Randomness Leakage Query) WhenA submits
((i, j), fr) with i ∈ {1, 2} and j ∈ [�] to Lr, the
challenger replies with fr(r

(j)
i).

• (Decryption Query) When A submits ciphertext
c to the decryption oracle Dec(sk, ·), the chal-
lenger replies with D(sk, c).

4. A outputs two vectors of � challenge messages
(m0,m1) where mb = (m(1)

b , . . . ,m
(�)
b) for b ∈ {0, 1} such

that |m(k)
0 | = |m(k)

1 | for any k ∈ [�].
5. (Challenge Ciphertexts for Multiple Messages)

The challenger picks up a random bit b
U←

{0, 1}. It computes a vector of challenge cipher-
texts, c∗ := Enc(pk,mb; r), where Enc(pk,mb; r)
denotes (Enc(pk,m(1)

b ; r(1)), . . . ,Enc(pk,m(�)
b ; r(�))). It

then sends c∗ toA.
6. (Post-Challenge Queries) A submits a polynomial

number of following queries:

• (Secret-Key Leakage Query) When A submits
(i, fs) with i ∈ {1, 2} to Ls, the challenger replies
with fs(ski).

• (Randomness Leakage Query) WhenA submits
((i, j), fr) with i ∈ {1, 2} and j ∈ [�] to Lr, the
challenger replies with fr(r

(j)
i).

• (Decryption Query) When A submits ciphertext
c to the decryption oracle Dec(sk, ·), the chal-
lenger replies with D(sk, c). We do not allow A
to submit any challenge ciphertext c∗ ∈ c∗.

7. A outputs bit b′.

The advantage of A in the above game is defined as
AdvKR-postLR-CCA2

A (λ) � 2 Pr[b′ = b] − 1 for security param-
eter λ. Let Ls be the length of the total amount of leaked
secret-key information,

Ls �
∑
j∈[qs]

| f (j)
s (ski)|,

FUJISAKI et al.: POST-CHALLENGE LEAKAGE RESILIENT PUBLIC-KEY CRYPTOSYSTEM IN SPLIT STATE MODEL
857

where qs denotes the maximum number of queries of A to
Ls. Let L(k)

r be the length of the total amount of leaked in-
formation from k-th randomness r(k), where k ∈ [�].

L(k)
r �

∑
j∈[qr]

| f (j)
r (r(k)

i)|,

where qr denotes the maximum number of queries of A to
Lr.

We say that a split-state PKE is (Ls, Lr)-KR-postLR-
CCA2 secure for multiple messages in the split-state model,
if for all PPT algorithmA that may receives secret-key leak-
age of at most Ls bit and sender-randomness leakage of at
most Lr bit on each randomness r(k) (i.e., L(k)

r ≤ Lr for all
k ∈ [�]), it holds that AdvKR-postLR-CCA2

A (λ) = negl(λ).

Remark 2.11 (Multi-Message Security): We note that in
the standard PKE, single-message (semantic) security im-
plies multiple-message security [14]. It is not the case of
post-challenge leakage PKEs. Indeed, the proof of security
for Halevi and Lin [17] fails if an adversary is allowed to
choose multiple challenge messages.

Remark 2.12 (Randomness-Dependent Messages [5]):
The above game stipulates the CCA attack game for
multiple-challenge messages of split-state PKEs in the
presence of pre/post-challenge secret-key and sender-
randomness leakage. Our definition allows adversary A
to have access to the randomness leakage oracle before it
chooses challenge messages, so that it may choose mes-
sages dependent on random strings used in encryption, i.e.,
randomness-dependent security [5].

Remark 2.13: In the above definition, simultaneous leak-
age on (partial) secret-key and randomness, such as
F(ski, r

(k)
j), is not assumed. One reason for this is that a

sender (an encryptor) and a receiver (a decryptor) would be
different in the most cases. We note that even if such simul-
taneous leakage is allowed, security of our proposed scheme
is not affected.

3. Two-Source Extractor Resilient to Pre/Post-Chall-
enge Leakage

We consider two-source extractors resilient to pre/post-
challenge leakage, which play an important role in the se-
curity proof of our scheme.

Let Ext2 : {0, 1}t × {0, 1}t → {0, 1}m be a worst-case
(v, ε)-two-source extractor. Let x = (x1, x2) where x1, x2 ∈
{0, 1}t and Ext2(x) = Ext2(x1, x2). We now consider the
following game GExt2.

1. The challenger picks up x1, x2
U← {0, 1}t, indepen-

dently. It also chooses w0
U← {0, 1}m and sets x :=

(x1, x2) and w1 := Ext2(x1, x2). It then runs adversary
A.

2. (Pre-Challenge Stage) A may adaptively submit an a-
priori unbounded polynomial number of queries with
the form of function (i, fPre(·)) (where i ∈ {1, 2}). For

query (i, fPre(·)), the challenger returns fPre(xi).
3. A then asks for the challenge. The challenger then

picks up b
U← {0, 1} and sends wb toA.

4. (Post-Challenge Stage)A may adaptively submit an a-
priori unbounded polynomial number of queries with
the form of function (i, fPost(·)) (where i ∈ {1, 2}), and
the challenger returns fPost(xi).

5. A finally outputs a bit b′ and wins if b′ = b.

The advantage of A in the above game is defined as
Adv(LPre,LPost)

A (m) := 2 Pr[b′ = b] − 1, where LPre denotes the
bit length of the total amount of leaked information in the
pre-challenge stage, i.e., LPre �

∑
j | f (j)

Pre(xi)| where f (j)
Pre(xi)

denotes the answer of the challenger for the j-th query in
the pre-challenge stage, and LPost denotes the bit length of
the total amount of leaked information in the post-challenge
stage, i.e., LPost �

∑
j | f (j)

Post(xi)| where f (j)
Post(xi) denotes the

answer of the challenger for the j-th query in the post-
challenge stage. We call the above game the pre-challenge
leakage game if LPost = 0. On the contrary, we call it the
post-challenge leakage game if LPost > 0.

The advantage ofA in the pre-challenge leakage game
is defined as AdvPreA (m) � Adv(LPre,0)

A (m).
Similarly, the advantage of A in the post-challenge

leakage game is defined as AdvPostA (m) � Adv(LPre,LPost)
A (m)

with LPost > 0.
We show in the following theorems that the two-source

extractor given in [6] is actually resilient to the pre/post-
challenge leakage games.

Theorem 3.1: There exist constant γ, with 0 < γ <
1/2, and polynomial-time computable two-source extrac-
tor Ext2 : {0, 1}t × {0, 1}t → {0, 1}m, such that, for every
sufficiently large t and for any unbounded distinguisher A,
AdvPreA (m) ≤ 2−3m/2 as long as LPre ≤ (1/2 + γ)t. In addi-
tion, constant γ is very close to a universal constant given
by Bourgain’s extractor [6].

Proof. Let Ext2 : {0, 1}t × {0, 1}t → {0, 1}m be a worst-
case (v, ε)-two-source extractor presented in Theorem 2.7,
where v = (1/2 − γ′)t for a universal constant γ′ < 1/2. It
follows from Lemma 2.6 that Ext2 is an average-case (v +
log(1/α), ε + 2α)-two-source extractor for any α > 0.

Let f (x) denote the sequence of the responses of the
challenger for A’s queries (in the pre-challenge stage), that
is, f (x) = (f (1)

Pre(xi1), f (1)
Pre(xi2), ...) where i1, i2, ... ∈ {1, 2}. By

Lemma 2.3, the average min-entropy of x1 and x2 given f (x)
is at least t − LPre, because H̃∞(xi| f (x)) ≥ H̃∞(xi) − LPre =
t − LPre for i ∈ {1, 2}. In addition, secret x1 and x2 are still
independent conditioned on f (x), due to Lemma 2.9. There-
fore, it holds that

Δ((Ext2(x), f (x)), (Um, f (x))) ≤ ε + 2α,

as long as t−LPre ≥ v+log(1/α), because Ext2 is an average-
case (v+ log(1/α), ε+2α)-two-source extractor (for any α >
0).

Hence, we have that AdvPreA (m) ≤ ε + 2α with LPre ≤

858
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.3 MARCH 2015

t − v − log(1/α) for any unbounded distinguisherA.
Here we remark that for sufficiently large t, we can

take enough small ε = 2−2m, due to Lemma 2.8. Sup-
pose that Ext2′ : ({0, 1}t)2 → {0, 1}m′ is a worst-case
(v, 2−cm′)-two-source extractor for some constant c > 0,
and Ext2 : ({0, 1}t)2 → {0, 1}m is the extractor such that
it outputs the first m = m′/d bit of the output of Ext2′.
By Lemma 2.8, the latter is (v, 2−(cd)m)-two-source extrac-
tor, with 2−cm′ = 2−(cd)m.

We set α = 2−2m. Then ε + 2α ≤ 2−3m/2, and t − v −
log(1/α) = t − (1/2 − γ′) t − 2m = (1/2 + (γ′ − 2m/t)) t.
Hence, we can take another constant 0 < γ ≤ γ′ − 2m/t for
sufficiently large t. By construction, we can indeed choose
t, m (almost) independently, conditioned on t > m [6].

Therefore, for sufficiently large t and any unbounded
distinguisher A, we have AdvPreA (m) ≤ 2−3m/2 as long as
LPre ≤ (1/2+γ)t, where 0 < γ < 1/2 is (close to) a universal
constant given by Bourgain’s extractor. �

We now observe the following: If there is a two-source
extractor resilient to the pre-challenge leakage such that
AdvPreA′ (m) ≤ 2−3m/2 for any adversary A′, the two-source
extractor is also resilient to the post-challenge leakage such
that AdvPostA (m) ≤ 2−m/2 for any adversary A, because one
can correctly guess the challenge value w at least with 2−m.

Theorem 3.2: There exist a constant γ, with 0 < γ < 1/2,
m = Ω(t), and polynomial-time computable two-source ex-
tractor Ext2 : {0, 1}t × {0, 1}t → {0, 1}m, such that, for
every sufficiently large t, for any unbounded distinguisher
A, and for any LPre, LPost with LPre + LPost ≤ (1/2 + γ)t,
AdvPostA (m) ≤ 2−m/2. In addition, constant γ is close to a
universal constant given by Bourgain’s extractor [6].

Proof. Let Ext2 be the two-source extractor given in Theo-
rem 3.1. Namely, for any distinguisherA′ that attacks Ext2
in the pre-challenge game, it holds that AdvPreA′ (m) ≤ 2−3m/2

as long as LPre ≤ (1/2 + γ)t.
Suppose for contradiction that there is a distinguisher

A that attacks Ext2 in the post-challenge leakage game with
AdvPostA (m) > 2−m/2 and LPre + LPost ≤ (1/2 + γ)t. Then, we
can construct a distinguisherA′ in the pre-challenge leakage
game as follows:

1. A′ chooses w
U← {0, 1}m.

2. A′ runsA in the post-challenge leakage game with the
challenge w and waits untilA outputs a bit b′.

3. After the pre-challenge stage (for A′), A′ receives wb

from the challenger.
4. If w = wb, then A′ outputs b′. Otherwise, it outputs a

random bit.

It is easy to see that AdvPreA′ (m) = 2−mAdvPostA (m), because
the probability w = wb is 2−m. Therefore, AdvPreA′ (m) >
2−3m/2. This contradicts Theorem 3.1. �

We note that Halevi and Lin [17] implicitly utilize the
fact that a good two-source extractor is a post-challenge
leakage resilient two-source extractor. What we have done

here is to explicitly define a post-challenge leakage resilient
two-source extractor and show the fact that Halevi and Lin
[17] has already shown implicitly.

4. Our Scheme

Let PKECCA2 = (GenCCA2,EncCCA2,DecCCA2) be an arbi-
trary IND-CCA2 secure PKE. Let Ext2 : {0, 1}t × {0, 1}t →
{0, 1}m be an arbitrary two-source extractor shown in The-
orem 3.2. For simplicity, we assume that the randomness
spaces of Gen
 and Enc
 are both {0, 1}m. We then pro-
vide a new PKE scheme PKE
 = (Gen
,Enc
,Dec
) as
follows.

• Gen
, the key generation algorithm, is a PPT algo-
rithm that takes 1λ as input and outputs (PK, S K) =
(pk, (s1, s2)), where

1. s1, s2
U← {0, 1}t;

2. w = Ext2(s1, s2);
3. (pk, sk) = GenCCA2(1λ;w).

• Enc
, the encryption algorithm, is a PPT algorithm that
takes (PK,M) and outputs c = EncCCA2(pk,M;w′),
where

1. r1, r2
U← {0, 1}t′ ;

2. w′ = Ext2(r1, r2).

• Dec
, the decryption algorithm, is a DPT algorithm
that takes (S K, c), where S K = (s1, s2), and outputs
M = DecCCA2(sk, c), where

1. w = Ext2(s1, s2);
2. (pk, sk) = GenCCA2(1λ;w).

We now show the security of our scheme in the follow-
ing theorem:

Theorem 4.1: Let 0 < γ < 1/2 be a constant close to a uni-
versal constant γ′ determined by the two-source extractor of
[6]. The above scheme PKE
 is (Ls, Lr)-KR-postLR-CCA2
secure in the 2-split-state model, as long as Ls ≤ (1/2 + γ)t
and Lr ≤ (1/2 + γ)t′.

Proof. The basic idea of the security proof is as follows:
Let Ext2 be a post-challenge leakage resilient two-source
extractor, as shown in Theorem 3.2. In the security proof,
we first replace w = Ext2(s1, s2) with random string w̃,
which is independent of s1, s2. We then show that the re-
placement yields no significant gaps on the adversary’s ad-
vantage; Otherwise, it could give a good distinguisher that
can break post-challenge leakage resilient two-source ex-
tractor Ext2 in game GExt2, which contradicts Theorem 3.2.

We also apply a similar argument to the sender-
randomness leakage. Let w′(k) = Ext2(r(k)

1 , r
(k)
2) be the ran-

dom string used to encrypt the k-th challenge message for
k ∈ [�], where � is the number of the challenge messages
given by A. We then repeat replacing w′(k) with truly ran-
dom w̃′(k), one by one, from k = 1 to �. Finally, all strings of

FUJISAKI et al.: POST-CHALLENGE LEAKAGE RESILIENT PUBLIC-KEY CRYPTOSYSTEM IN SPLIT STATE MODEL
859

sender-randomness used in Enc are replaced with truly ran-
dom strings, w̃′(k), which are independent of r(k) = (r(k)

1 , r
(k)
2).

Note that, after the replacements, any information from
the leakage oracles is independent of the secret key and
sender-randomnesses that the challenger indeed utilizes.
Therefore, the game eventually coincides with the multiple-
message IND-CCA2 game, and hence, the adversary has
only negligible advantage since the multiple-message IND-
CCA2 security implies the standard (single-message) IND-
CCA2 security.

We now turn to the formal security proof. Consider the
following game sequences from G0 to G3.
Game G0: This game is the original KR-postLR CCA2
game in the 2-split-state model.
Game G1: This game is the same as Game G0 except that
we instead use a truly random string w̃, which is independent
of secret-key (s1, s2) generated by Gen
.
Game G2: This game is the same as Game G1 except that
for every k ∈ [�], we apply a truly random string w̃′(k) to
produce k-th challenge ciphertext, which is independent of
(r(k)

1 , r
(k)
2) generated by Enc
.

Game G3: In this game, we construct adversaryA∗ that at-

tacksPKECCA2 in the IND-CCA2 game as follows: A∗ starts
with the target public-key pk. It picks up at random (s1, s2)
and (r(k)

1 , r
(k)
2) for all k ∈ [�], which are completely indepen-

dent from w̃ behind pk and randomness w̃′(j)’s behind the se-
quence of the challenge ciphertexts, given by the challenger.
A∗ then runsA by simulating the leakage oracles. WhenA
finally outputs b′,A∗ outputs it.

Our goal is to bound AdvG0

A by estimating gaps between
every two games and using the assumption AdvG3

A∗ ≤ εCCA2
for some negligible εCCA2, where we denote by AdvG

A the
advantage of adversaryA in a game G. We show that a gap
between every AdvGi−1

A and AdvGi

A is quite small.

Claim 4.2: |AdvG0

A − AdvG1
A | = 2−Ω(m).

Proof. We construct a distinguisher D that attacks two-
source extractor Ext2 in the post-challenge leakage game
GExt2 defined in Section 3 as follows.

1. The challenger picks up s1, s2
U← {0, 1}t and sets w∗,

which is either Ext2(s1, s2) or a random string. The
challenger then feeds w∗ to distinguisherD.

2. D sets (pk, sk) = GenCCA2(1λ;w∗) and runs A with
pk. If A submits query (i, fs) (where i ∈ {1, 2}) to
the secret-key leakage oracle,D submits it to the chal-
lenger as a query in the post-challenge stage, and return
fs(si) (responded by the challenger) toA. IfA submits
c for decryption,D responds with M = DecCCA2(sk, c)
using sk.

3. When A outputs �, D chooses 2� random strings,

r(k)
i

U← {0, 1}t′ , for i ∈ {1, 2} and k ∈ [�], and sets
w′(k) := Ext2(r(k)

1 , r
(k)
2) for every k ∈ [�]. If A sub-

mits (i, k, fr), where i ∈ {1, 2} and k ∈ [�], to the
sender-randomness leakage oracle,D returns fr(r

(k)
i) to

A. If A submits c for decryption, D responds with

M = DecCCA2(sk, c) using sk.

4. WhenA submits (M0,M1), D chooses b
U← {0, 1} and

sets c∗ := EncCCA2(pk,Mb;w′). D feeds c∗ toA.
5. When A submits a query, D replies to it in the same

manner as in Steps, 4 and 5. We note that A is not
allowed to query any of the challenge ciphertexts for
decrytion.

6. Finally, when A outputs b′, D outputs 1 if b = b′ and
a random bit otherwise.

We note that Game G0 corresponds to the case w∗ =
Ext2(s1, s2), while Game G1 corresponds to the case that w∗
is a truly random string. By construction, we have |AdvG0

A −
AdvG1

A | ≤ 2AdvPostD . Therefore, by Theorem 3.2, we have
|AdvG0

A − AdvG1
A | ≤ 2−m/2+1. �

We now consider the difference of the advantages ofA
between Games, G1 and G2.

Claim 4.3: |AdvG1
A − AdvG2

A | = � · 2−Ω(m).

Proof. The proof strategy is substantially the same as in the
claim above, where we replace Ext2(r(k)

1 , r
(k)
2) with random

string w̃′(k) from k = 1 to � one by one. So, we consider a
sequence of games G(0)

1 , ...,G
(�)
1 , where G(0)

1 = G1 and G(�)
1 =

G2. In Game G(k)
1 , with 1 ≤ k ≤ �, we use uniform random

strings w̃′(j) for j ≤ k while the outputs of extractor w′(j) =

Ext2(r(j)
1 , r

(j)
2) from random r(j)

1 , r
(j)
2 for k < j ≤ �.

We discuss the difference of A’s advantages between
G(k−1)

1 and G(k)
1 for each k. For this purpose, we construct

distinguisherD that attacks two-source extractor Ext2 in the
post-challenge leakage game GExt2 defined in Section 3 as
follows:

1. The challenger picks up r(k)
1 , r

(k)
2

U← {0, 1}t′ and sets
w′(k), which is either Ext2(r(k)

1 , r
(k)
2) or a random string.

The challenger feeds w′(k) to D. Later, D uses w′(k) to
produce k-th ciphertext.

2. D picks up random s1, s2 ∈ {0, 1}t and w̃, indepen-
dently. D sets (pk, sk) := GenCCA2(1λ; w̃) and runs A
with pk. If A submits query (i, fs) (where i ∈ {1, 2})
to the secret-key leakage oracle, D returns fs(si) to A.
If A submits ciphertext c for decryption, D responds
with M = DecCCA2(sk, c) using sk.

3. When A outputs �, D first picks up (k − 1) random
strings, w̃′(1), . . . , w̃′(k−1). Then, D picks up 2(� − 1)

random strings, r(j)
i

U← {0, 1}t′ , for i ∈ {1, 2} and j ∈
[�]\{k}, and sets w′(j) = Ext2(r(j)

1 , r
(j)
2) for every j > k.

D sets w′ := (w̃′(1), . . . , w̃′(k−1), w′(k), w′(k+1), . . . , w′(�)).
IfA submits (i, j, fr), where i ∈ {1, 2} and j ∈ [�], to the
sender-randomness leakage oracle,D returns fr(r

(j)
i) to

A when j � k. If j = k, D submits the query to the
challenger as in the post-challenge stage and passes the
challenger’s response to A. If A submits ciphertext c
for decryption, D responds with M = DecCCA2(sk, c)
using sk.

4. When A submits (M0,M1), with Mi = (M(1)
i , . . . ,

860
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.3 MARCH 2015

M(�)
i), D chooses b

U← {0, 1} and sets c∗ :=
EncCCA2(pk,Mb;w′), and sends c∗ to A. We note that
w′ := (w̃′(1), . . . , w̃′(k−1), w′(k), w′(k+1), . . . , w′(�)), where
the first (k − 1) strings are truly random, the sequence
after the k-th string is of pseudo random strings, and
the k-th string is the one given by the challenger.

5. When A submits a query, D replies to it in the same
manner as in Steps, 4 and 5. We note that A is not
allowed to query any of the challenge ciphertexts for
decrytion.

6. Finally, when A outputs b′, D outputs 1 if b′ = b and
a random bit otherwise.

We note that Game G(k−1)
1 corresponds to the case

that w′(k) is a truly random string, while Game G(k)
1 corre-

sponds to the case w′(k) = Ext2(r(k)
1 , r

(k)
2). By construction,

|AdvG(k−1)
1
A − AdvG(k)

1
A | ≤ 2AdvPostD . Hence, by Theorem 3.2,

|AdvG(k−1)
1
A − AdvG(k)

1
A | ≤ 2−m/2+1. Repeating this argument for

1 ≤ k ≤ �, we obtain that |AdvG1
A − AdvG2

A | ≤ � · 2−m/2+1. �

Claim 4.4: AdvG2
A = Adv

G3

A∗ and AdvG3

A∗ = negl(λ).

Proof. The leaked information from the leakage oracle is
independent of the true decryption key and random sources
used in EncCCA2. Therefore, AdvG2

A = AdvG3

A∗ . AdvG3

A∗ =
negl(λ), because one-message IND-CCA2 security implies
multiple-message IND-CCA2 security. �

Combining these claims, we obtain the theorem state-
ment. �

By this theorem, it is easy to see that our encryp-
tion scheme is resilient to leakage of (1/2 + γ)�sk/2 and
(1/2 + γ)�rd/2 for some constant 0 < γ < 1/2 where
�sk = 2t is the total length of the secret key and �rd = 2t′
is the total length of the random string to create one cipher-
text.

4.1 In the Multiple-Split State Model

Halevi and Lin have claimed that their scheme is extended
in the multiple-split state model, using another extractor [2]
and the leakage of each split state turns out (1 − o(1)). (We
note however that the total leakage amount is 1/C(1 − o(1))
in the C-split state model.) We remark that our scheme
is also tailored in the multiple-split state model, using the
extractor [2]. An C-source (k, ε)-extractor [2] takes in-
dependent C random variables, X1, . . . , XC ∈ {0, 1}n with
H∞(Xi) ≥ k for every i ∈ [C], and outputs a m-bit string
which is ε-close to m-bit uniform distribution.

Theorem 4.5 (Corollary4.2 in [2]): There are constants
c1, c2 and a C-source (k, ε)-extractor Ext : ({0, 1}n)C →
{0, 1}m for every n, k with k > log10(n), C = O(log n

log k) and
m = c2k. Namely, if X1, . . . , XC are independent random
variables with with H∞(Xi) ≥ k for every i ∈ [C], it holds
that Δ(Ext(X1, . . . , XC),Um) < 2−kc1 .

Here, we set k = n0.9. Then, m = O(n0.9) and the al-
lowable leakage amount of each source turns out n(1− o(1))
because of n(1−n−0.1). We then construct a C-source extrac-
tor resilient to post-challenge leakage as in Sect. 3. We note
that a multiple-source version of Lemma 2.9 simply holds
and we can take enough small statistical distance ε due to
Lemma 2.8. We then apply our C-source post-challenge
resilient extractor to an arbitrary PKE as in Sect. 4. We
note that we can use a pseudo random generator to extend
an O(n0.9)-length random string to an O(n)-length pseudo
random string (where n = O(poly(n0.9))) and apply it to a
PKE scheme with security parameter n, although the secu-
rity level is lowered to n0.9.

5. Comparison with Halevi-Lin Scheme [17]

We review the Halevi-Lin scheme [17] to clarify its proper-
ties and compare with our scheme.

5.1 Hash Proof Systems

We recall the hash proof systems [8], [9], by borrowing the
notation of [18], [24]. Let C,K , S K, and PK be efficiently
samplable sets and letV be a subset in C. Let Λsk : C → K
be a hash function indexed by sk ∈ S K. A hash function
family Λ : S K ×C → K is projective if there is a projection
μ : S K → PK such that μ(sk) ∈ PK defines the action ofΛsk

over subsetV. That is to say, for every C ∈ V, K = Λsk(C)
is uniquely determined by μ(sk) and C. Λ is called ε-almost
1-universal if for all C ∈ C\V,

Δ((pk,Λsk(C)), (pk,K)) ≤ ε,

where sk
U← S K and K

U← K and pk = μ(sk). A hash proof
system HPS = (HPS.param, HPS.pub, HPS.priv) consists
of three algorithms such that HPS.param takes 1λ and out-
puts an instance of params = (group,Λ,C,V, S K, PK, μ),
where group contains some additional structural parameters
and Λ is a projective hash function family associated with
(C,V,S K, PK, μ) as defined above. The deterministic pub-
lic evaluation algorithm HPS.pub takes as input pk = μ(sk),
C ∈ V and a witness w such that C ∈ V and returns
Λsk(C). The deterministic private evaluation algorithm takes
sk ∈ S K and returns Λsk(C), without taking withness w for
C (if it exists). A hash proof system HPS as above is said
to have a hard subset membership problem if two random
elements C ∈ C and C′ ∈ C\V are computationally indis-

tinguishable, that is, {C |C U← C}λ∈N c≈ {C′ |C′ U← C\V}λ∈N.

5.2 Halevi-Lin Scheme

In the Halevi-Lin scheme, the key generation is done by

picking up sk1, sk2
U← S K independently and setting pk1 =

μ(sk1) and pk2 = μ(sk2). To encrypt message m, the sender
picks random x1, x2, computes ci = xi⊕HPS.pub(pki,Ci, wi)
for i ∈ {1, 2} and computes c = M ⊕ Ext2(x1, x2). The

FUJISAKI et al.: POST-CHALLENGE LEAKAGE RESILIENT PUBLIC-KEY CRYPTOSYSTEM IN SPLIT STATE MODEL
861

sender then sends ciphertext (C1,C2, c1, c2, c) to the re-
ceiver. To decrypt them, the decryptor computes x′i = ci ⊕
HPS.priv(ski,Ci) for i ∈ {1, 2} and obtains c ⊕ Ext2(x′1, x

′
2).

Here, for each i, xi and (Ci, ci) are a message/ciphertext pair
of a hash proof system based PKE scheme. This PKE is re-
placed with any entropic leakage-resilient CPA PKE scheme
in the Halevi-Lin scheme, although the only known con-
struction so far is the hash proof system based.

(5) Leakage Rate.

It follows from HPS [24] that for every Ci ∈ C\V, letting
xi = HPS.priv(ski,Ci), H̃∞(xi|(pki, L)) ≤ H̃∞(ski|(pki, L)),
where L is a leakage variable. By construction (of the two-
source extractor), we require H̃∞(xi|(pki, L)) ≥ (1/2−γ)|K|,
which implies that the leakage amount of ski is at most
(1/2 + γ)|S K|. Hence, the leakage amount of secret keys
of [17] is at most (1/2 + γ)�sk/2, where �sk denotes the
total length of secret key and γ is a universal constant of
post-challenge leakage-resilient two-source extractors. This
amount is essentially equivalent to that of our proposed
scheme.

(6) Single-Message Security.

Halevi-Lin scheme is not proven CPA secure against mul-
tiple challenge ciphertexts. Let c = {(C(i)

1 ,C
(i)
2 , ci)} be the

challenge ciphertexts, where ci = M(i)
b ⊕Ext2(x(i)

1 , x
(i)
2). Here,

sk j (j ∈ {0, 1}) is related to all x(i)
j = HPS.priv(sk j,C

(i)
j)

where i ∈ {1, . . . , �}. By applying the trick in Theorem 3.2
(originally appeared in Claim 8 in [17]), AdvPostA (λ) =
2�mAdvPreA (λ), where AdvPreA is the advantage of A in the
presence of pre-challenge leakage and AdvPostA is the advan-
tage of A in the presence of post-challenge leakage. Here,
since � is a-priori unbounded polynomial, AdvPostA (λ) turns
out non-negligible for some �. Therefore, the Halevi-Lin
scheme [17] is not proven CPA secure against multiple chal-
lenges. We note that we do not say that the Halevi-Lin
scheme [17] is insecure against multiple challenges. We
only say that the current proof strategy in [17] is not ap-
plicable to multiple challenges.

(7) In the Multiple-Split State Model

As already mentioned, Halevi-Lin scheme can be extended
in the multiple-split state model. When using C-source ex-
tractor of [2], it has �sk

C (1 − o(1)) of total leakage amount of
secret key, similarly as ours, where k = n1/d for any d > 1.

6. Concluding Remarks

We have provided a very simple way to construct a
(multiple-challenge) CCA2 secure PKE scheme that is
simultaneously resilient to post-challenge secret-key and
sender-randomness leakage from any CCA2 secure PKE
scheme in the two-split state model, which was stated open
in [17]. Our scheme has the same leakage rate as that
of [17] and secure against multiple challenges unlike [17].
By construction, it is obvious that our method can be ap-

plied to other cryptographic primitives. For instance, when
applying the two-source extractor to randomness behind a
master-key and sender-randomness behind an encryption of
an identity based encryption scheme (IBE), we can obtain a
post-challenge master-key and sender-randomness leakage
resilient IBE scheme from any IBE scheme.

We conclude our paper with the following remarks.

• Did It Really Solve Open Issues (about CCA instantia-
tions and randomness leakage)?: We think the answer
is YES. Although the model of the decryption algo-
rithm is syntactically different from the original defini-
tion, it can be fit, as shown in Remark 2.10.

• Is The Current Split-State Model Adequate?: As dis-
cussed above, it is impossible to achieve post-challenge
secret-key or sender-randomness leakage for PKE in
the plain model. Therefore, searching a weaker ap-
propriate model is a right direction. The split-state
model by Halevi and Lin is one attempt of going to-
ward this goal. We have found a simple solution in
this model. Some may think that our solution is arti-
ficial. Although a half of our motivation for this work
is to solve open issues, the remaining half is to raise
a question of whether the current split-state model is
reasonable. We hope our solution inspires the reader to
discuss an appropriate model.

Acknowledgements

We would like to thank anonymous reviewers for useful
comments.

References

[1] A. Akavia, S. Goldwasser, and V. Vaikuntanathan, “Simultaneous
hardcore bits and cryptography against memory attacks,” TCC, Lect.
Notes Comput. Sci., vol.5444, pp.474–495, Springer, 2009.

[2] B. Barak, A. Rao, R. Shaltiel, and A. Wigderson, “2-source dis-
persers for no(1) entropy and ramsey graphs beating the frankl-wilson
construction,” Annals of Mathematics, vol.176, no.3, pp.1483–1543,
2012.

[3] M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H.
Shacham, and S. Yilek, “Hedged public-key encryption: How to
protect against bad randomness,” ASIACRYPT, Lect. Notes Com-
put. Sci., vol.5912, pp.232–249, Springer, 2009.

[4] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, “Rela-
tions among notions of security for public-key encryption schemes,”
CRYPTO’98, Lect. Notes Comput. Sci., vol.1462, pp.26–45, 1998.

[5] E. Birrell, K.-M. Chung, R. Pass, and S. Telang, “Randomness-
dependent message security,” TCC’13, pp.700–720, 2013.

[6] J. Bourgain, “More on the sum-product phenomenon in prime fields
and its applications,” International Journal of Number Theory, vol.1,
pp.1–32, 2005.

[7] Z. Brakerski, Y.T. Kalai, J. Katz, and V. Vaikuntanathan, “Overcom-
ing the hole in the bucket: Public-key cryptography resilient to con-
tinual memory leakage,” FOCS, pp.501–510, IEEE Computer Soci-
ety, 2010. Full version available from http://eprint.iacr.org/2010/278

[8] R. Cramer and V. Shoup, “A practical public key cryptosys-
tem provably secure aganist adaptive chosen ciphertext attacks,”
CRYPTO’98, Lect. Notes Comput. Sci., vol.1462, pp.13–25, 1998.

[9] R. Cramer and V. Shoup, “Universal hash proofs and a paradigm

862
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.3 MARCH 2015

for adaptive chosen ciphertext secure public-key encryption,” Euro-
crypt’02, Lect. Notes Comput. Sci., vol.2332, pp.45–64, 2002.

[10] Y. Dodis, A.B. Lewko, B. Waters, and D. Wichs, “Storing secrets
on continually leaky devices,” in Rafail Ostrovsky, editor, FOCS,
pp.688–697, IEEE, 2011.

[11] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data,”
SIAM J. Computing, vol.38, no.1, pp.97–139, 2008.

[12] S. Dziembowski and K. Pietrzak, “Intrusion-resilient secret shar-
ing,” FOCS, pp.227–237, IEEE Computer Society, 2007.

[13] S. Dziembowski and K. Pietrzak, “Leakage-resilient cryptography,”
FOCS, pp.293–302, IEEE Computer Society, 2008.

[14] O. Goldreich, “Foundations of Cryptography: Basic Applications,”
vol.2, Cambridge Press, 2004.

[15] S. Goldwasser and G.N. Rothblum, “Securing computation against
continuous leakage,” CRYPTO, Lect. Notes Comput. Sci., vol.6223,
pp.59–79, Springer, 2010.

[16] J.A. Halderman, S.D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J.A. Calandrino, A.J. Feldman, J. Appelbaum, and E.W. Felten,
“Lest we remember: Cold-boot attacks on encryption keys,” Com-
mun. ACM, vol.52, no.5, pp.91–98, 2009.

[17] S. Halevi and H. Lin, “After-the-fact leakage in public-key en-
cryption,” TCC, Lect. Notes Comput. Sci., vol.6597, pp.107–124,
Springer, 2011.

[18] D. Hofheinz and E. Kiltz, “Secure hybrid encryption from weakened
key encapsulation,” CRYPTO, pp.553–571, 2007.

[19] Y. Ishai, A. Sahai, and D. Wagner, “Private circuits: Securing hard-
ware against probing attacks,” CRYPTO, Lect. Notes Comput. Sci.,
vol.2729, pp.463–481, Springer, 2003.

[20] A. Juma and Y. Vahlis, “Protecting cryptographic keys against con-
tinual leakage,” CRYPTO, Lect. Notes Comput. Sci., vol.6223,
pp.41–58, Springer, 2010.

[21] F.-H. Liu and A. Lysyanskaya, “Tamper and leakage resilience in the
split-state model,” Advances in Cryptology — Crypto 2012, Lect.
Notes Comput. Sci., vol.7417, pp.517–532. Springer, 2012.

[22] S. Micali and L. Reyzin, “Physically observable cryptography (ex-
tended abstract),” TCC, Lect. Notes Comput. Sci., vol.2951, pp.278–
296, Springer, 2004.

[23] H. Namiki, K. Tanaka, and K. Yasunaga, “Randomness leakage in
the KEM/DEM framework,” ProvSec, Lect. Notes Comput. Sci.,
vol.6980, pp.309–323, Springer, 2011.

[24] M. Naor and G. Segev, “Public-key cryptosystems resilient to key
leakage,” CRYPTO, Lect. Notes Comput. Sci., vol.5677, pp.18–35,
Springer, 2009.

[25] A. Rao, “An exposition of Bourgain’s 2-source extractor,” Elec-
tronic Colloquium on Computational Complexity (ECCC), TR07-
034, 2007.

[26] O. Regev, “On lattices, learning with errors, random linear codes,
and cryptography,” J. ACM, vol.56, no.6, pp.84–93, 2009.

[27] Z. Zhang, S.S. M. Chow, and Z. Cao, “Post-challenge leakage in
public-key encryption,” SCIS 2013, 2A-4(2), 2013.

Eiichiro Fujisaki received the B.S. and
Ph.D. degrees from Tokyo Institute of Technol-
ogy in 1991 and 2005, respectively. He is cur-
rently engaged in research on cryptography and
information security at NTT Secure Platform
Laboratories. He is a member of IEICE, IPSJ,
and IACR.

Akinori Kawachi is an assistant profes-
sor of Department of Mathematical and Com-
puting Sciences, Tokyo Institute of Technology.
He received B.E., M.Info., and Ph.D. degrees
from Kyoto University in 2000, 2002, and 2004,
respectively. His research interests are com-
putational complexity, quantum computing, and
foundations of cryptography.

Ryo Nishimaki received his B.E. and M.I.
degrees from Kyoto University, Kyoto Japan in
2005 and 2007, and Dr.Sci degree from Tokyo
Institute of Technology, Tokyo Japan in 2010.
Currently he is engaged in research on public-
key cryptography and cryptographic protocols
at NTT Secure Platform Laboratories. He is a
member of IEICE and IACR.

Keisuke Tanaka is Associate Professor
of Department of Mathematical and Computing
Sciences at Tokyo Institute of Technology. He
received his B.S. from Yamanashi University in
1992 and his M.S. and Ph.D. from Japan Ad-
vanced Institute of Science and Technology in
1994 and 1997, respectively. For each degree,
he majored in computer science. Before joining
Tokyo Institute of Technology, he was Research
Engineer at NTT Information Platform Labs.

Kenji Yasunaga received his B.E. degree
in information and computer sciences in 2003,
and his M.S. and Ph.D. degrees in information
science and technology in 2005 and 2008, from
Osaka University, Japan. He was a Postdoc-
toral Fellow at Kwansei Gakuin University in
2008, was an Assistant Professor at Tokyo Insti-
tute of Technology from 2008 to 2011, and was
a Researcher at Institute of Systems, Informa-
tion Technologies and Nanotechnologies (ISIT)
from 2011 to 2012. He is currently an Assis-

tant Professor at Kanazawa University. His research interests are in Coding
Theory, Cryptography, and Computational Complexity.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

