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Determination of the Local Weight Distribution of
Binary Linear Block Codes
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Abstract—Some methods to determine the local weight distri-
bution of binary linear codes are presented. Two approaches are
studied: A computational approach and a theoretical approach.
For the computational approach, an algorithm for computing the
local weight distribution of codes using the automorphism group
of the codes is devised. In this algorithm, a code is considered the
set of cosets of a subcode, and the set of cosets is partitioned into
equivalence classes. Thus, only the weight distributions of zero
neighbors for each representative coset of equivalence classes
are computed. For the theoretical approach, relations between
the local weight distribution of a code, its extended code, and its
even weight subcode are studied. As a result, the local weight
distributions of some of the extended primitive BCH codes,
Reed-Muller codes, primitive BCH codes, punctured Reed-Muller
codes, and even weight subcodes of primitive BCH codes and
punctured Reed-Muller codes are determined.

Index Terms—Local weight distribution, binary linear code,
automorphism group, zero neighbor, coset, primitive BCH code,
Reed-Muller code.

I. INTRODUCTION

In a binary linear code, a zero neighbor is a codeword
whose Voronoi region shares a facet with that of the all-zero
codeword [1]. The studies of zero neighbors in a linear code
are crucial for the performance analysis of the code under
maximum likelihood (ML) decoding. The weight distribution
of zero neighbors, called local weight distribution [2] (or
local distance profile [1], [9]), is also important for ML
performance of the code. For example, the local weight dis-
tribution could give a tighter upper bound on error probability
for soft decision decoding over an AWGN channel than the
usual union bound [9]. Zero neighbor appears in an optimal
hard decision decoding algorithms, so called gradient-like
decoding [4], [12]. The number of zero neighbors in a code
determines the complexity of gradient-like decoding of the
code. In the context of cryptography, Massey showed that
the access structure of a secret sharing scheme determined
by a linear code is characterized by zero neighbors in the dual
code [15].
Agrell showed an efficient method to examine zero neigh-

borship of a codeword in a binary linear code and computed
the local weight distributions by examining all the codewords
for some codes [1]. In [3], Ashikhmin and Barg studied zero
neighbors (called minimal vectors in [3]) for certain classes of
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codes, and derived formulas for the local weight distribution of
Hamming codes and second-order Reed-Muller codes. Partial
results for the local weight distributions of Reed-Muller codes
are given in [6]. In [2] and [3], asymptotic analyses for long
codes and random codes are given. Mohri et al. proposed
the computational algorithms for cyclic codes [16], [17]. The
number of codewords to be examined is reduced in their
work. The basic idea for the reduction was suggested by
Agrell [1]. Using the algorithms, they determined the local
weight distributions of all the primitive BCH codes of length
63.
In this paper, some methods to determine the local weight

distribution of binary linear block codes are studied. Two
approaches are studied: A computational approach and a
theoretical approach. The basic idea of the computational
approach is the one suggested by Agrell [1], which is also
used in the algorithms in [16] and [17]. The proposed com-
putational algorithm is for codes that are closed under a
group of permutations. The proposed algorithm is also based
on that of computing the (global) weight distribution for
primitive BCH codes in [10]. In this algorithm, a code is
considered a set of cosets of a subcode, and the set of cosets
are partitioned into equivalence classes with an invariance
property. Only the weight distributions for each representative
coset are computed. Thereby the computational complexity is
reduced. In this paper, we show that this idea can be applied
to local weight distribution. The local weight distributions
for some of extended primitive BCH codes and Reed-Muller
codes are obtained using this computational approach. As for
the theoretical approach, relations between the local weight
distributions of a code, its extended code, and its even weight
subcode are studied. We show that, for a code that the extended
code is a transitive invariant code and contains no codewords
with weight multiples of four, the local weight distribution is
determined from that of the corresponding extended code. As
a result, the local weight distributions for some of primitive
BCH codes, punctured Reed-Muller codes, and their even
weight subcodes are obtained.
The outline of this paper is as follows. In Section II,

definitions and some properties for local weight distribution
are given. In Section III, an algorithm for computing the
local weight distribution is proposed. The algorithm uses the
automorphism group of a code and performs effectively for
extended primitive BCH codes and Reed-Muller codes. In
Section IV, two methods for improving the algorithm proposed
in Section III are presented. The first method uses the code tree
structure of a code. The second uses the automorphism group
of a code. In Section V, a theoretical approach to determine
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the local weight distribution is presented. Relations between
the local weight distributions of a code, its extended code,
and its even weight subcode are given. In Section VI, the
local weight distributions that are obtained using the methods
described in Sections III-V are presented. For primitive BCH
codes, the local weight distributions of the (127, k) codes for
k ≤ 50, their extended codes, and their even weight subcodes
are obtained. For Reed-Muller codes, the local weight distri-
butions of the third-order Reed-Muller code of length 128, its
punctured code, and the even weight subcode of the punctured
code are obtained.

II. LOCAL WEIGHT DISTRIBUTION
In this section, the definition, some properties, and applica-

tions for the local weight distribution of binary linear block
codes are presented.

A. Definitions
Let C be a binary (n, k) linear code. Define a mapping s

from {0, 1} to R as s(0) = 1 and s(1) = −1. The mapping
s is naturally extended to one from {0, 1}n to Rn. A zero
neighbor of C is defined as follows [1]:

Definition 1 (Zero neighbor): For v ∈ C, define m0 ∈ Rn

as m0 = 1
2 (s(0) + s(v)) where 0 = (0, 0, . . . , 0). The

codeword v is a zero neighbor if and only if

dE(m0, s(v)) = dE(m0, s(0)) < dE(m0, s(v
′)),

for any v
′ ∈ C \ {0, v}, (1)

where dE(x, y) is the Euclidean distance between x and y in
Rn.

A zero neighbor is also called a minimal codeword in [3].
The following lemma is useful to check whether a given
codeword is a zero neighbor or not [1].

Lemma 1: v ∈ C is a zero neighbor if and only if there
is not a v

′ ∈ C \ {0} such that Supp(v′) ! Supp(v). Note
that Supp(v) is the set of support of v, which is the set of
positions of nonzero elements in v = (v1, v2, . . . , vn).

The local weight distribution is defined as follows:

Definition 2 (Local weight distribution): Let Lw(C) be the
number of zero neighbors with weight w in C. The local
weight distribution of C is defined as the (n + 1)-tuple
(L0(C), L1(C), . . . , Ln(C)).

B. Some Properties
For the local weight distribution, we have the following

lemma [2], [3].

Lemma 2: Let Aw(C) be the number of codewords with
weight w in C and d be the minimum distance of C.

Lw(C) =

{

Aw(C), w < 2d,
0, w > n − k + 1.

(2)

When the global weight distribution (A0(C), A1(C), . . . ,
An(C)) is known, only Lw(C) with 2d ≤ w ≤ n − k + 1

needs to be computed to obtain the local weight distribution.
Generally, the complexity for computing the local weight
distribution is larger than that for computing the global weight
distribution. Therefore, Lemma 2 is useful for obtaining local
weight distributions. Moreover, when all the weights w in a
code are confined in w < 2d and w > n − k + 1, the local
weight distribution can be obtained from the global weight
distribution straightforwardly. For example, the local weight
distribution of the (n, k) primitive BCH code of length 63
for k ≤ 18, of length 127 for k ≤ 29, and of length 255 for
k ≤ 45 can be obtained from their global weight distributions.
In general, the complexity for computing the local weight

distribution, as well as that for the global weight distribution, is
very large. Agrell noted in [1] that the automorphism group of
codes helps reduce the complexity. Using the automorphism
group of cyclic codes, i.e. cyclic permutations, Mohri et al.
obtained the local weight distributions of the (63, k) primitive
BCH codes for k ≤ 45 [16], [17]. The algorithm uses the
following invariance property for cyclic permutations.

Theorem 1: Let C be a binary cyclic code. A codeword
v ∈ C is a zero neighbor if and only if any cyclic permuted
codeword of v is a zero neighbor.

Corollary 1: Let C be a binary cyclic code, and σi
v be

an i times cyclic-permuted codeword of v ∈ C. Consider a
set S = {v,σv,σ2

v, . . . ,σp(σ,v)−1
v}, where p(σ, v) is the

period of σ, which is the minimum i such that σi
v = v. Then

(1) if v is a zero neighbor, all codewords in the set S are zero
neighbors; and otherwise, (2) all codewords in S are not zero
neighbors.

In their algorithm, the representative codeword of cyclic
permutations (a representative codeword of S in Corollary 1)
and the number of the equivalent codewords (the size of S)
are generated efficiently. The complexity is about 1/n that
of the brute force method. The local weight distributions
of the (63, k) primitive BCH codes with k = 51, 57 are
obtained by using another algorithm [16]. The latter algorithm
generates the representative codewords once or more, although
the former algorithm generates the representative codewords
only once.
The following corollary implies that the algorithms in [16]

and [17] can be applied to extended cyclic codes straightfor-
wardly.

Corollary 2: Let C and Cex be a binary cyclic code and
its extended code, respectively. For v ∈ C, let v

(ex) be
the corresponding extended codeword in Cex, that is, v

(ex)

is obtained from v by adding the over-all parity bit. For
any cyclic permuted codeword σi

v of v, (σi
v)(ex) is a zero

neighbor in Cex if and only if v
(ex) is a zero neighbor in Cex.

Proof: (If part) Suppose that (σi
v)(ex) is not a

zero neighbor in Cex. There exists u ∈ C such that
Supp((σi

u)(ex)) ! Supp((σi
v)(ex)). Then Supp(u(ex)) !

Supp(v(ex)), and this contradicts the fact that v
(ex) is a zero

neighbor in Cex. (Only if part) Suppose that v(ex) is not a zero
neighbor in Cex. There exists u ∈ C such that Supp(u(ex)) !
Supp(v(ex)). Hence, Supp((σi

u)(ex)) ! Supp((σi
v)(ex)),
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and this contradicts the fact that (σi
v)(ex) is a zero neighbor

in Cex.

From Corollaries 1 and 2, the zero neighborships
of codewords in S′ = {v(ex), (σv)(ex), (σ2

v)(ex), . . . ,
(σp(σ,v)−1

v)(ex)} are the same. To compute the local weight
distribution of an extended cyclic code Cex, we only have
to check zero neighborship for the representative extended
codewords of cyclic permutations. Thus, we can compute
the local weight distribution of an extended cyclic code in
the same way as that in the algorithms in [16] and [17] for
representative codewords with respect to the cyclic group of
permutations. However, extended primitive BCH codes are
closed under the affine group of permutations, which are larger
than the cyclic group of permutations. Using a larger group of
permutations, the complexity for computing the local weight
distribution may be reduced. This is a basic observation for
the computational approach described in Section III.

C. Applications

For BPSK transmission, a codeword v ∈ C is transmitted
as s(v) (the mapping s is defined in II-A). Assuming AWGN
interference, the received sequence when s(v) is transmitted
is

r = s(v) + n,

where r is the n-dimensional vector and n is an n-dimensional
vector whose elements are independent Gaussian random vari-
ables with zero mean and variance N0/2. Since C is a linear
code, we assume that the all-zero codeword 0 is transmitted.
The word error probability of soft-decision decoding (ML
decoding) is given as

Pe = P





⋃

v∈C\{0}

E0→v



 (3)

≤
∑

v∈C\{0}

P [E0→v], (4)

where E0→v denotes the pairwise error event. This is the event
that, when the all-zero codeword 0 is transmitted, ML decoder
metric (the Euclidean distance) between the received vector
r and s(v) is smaller than that between r and s(0), i.e.,
E0→v = {r : dE(r, s(v)) ≤ dE(r, s(0))}. (4) is a union
upper bound of Pe. Then the union bound of Pe using the
weight distribution of C is obtained [7] as

Pe ≤
∑

v∈C\{0}

Q

(

√

wt(v)
2Eb

N0

)

(5)

=
n

∑

i=1

Ai(C)Q

(

√

i
2Eb

N0

)

, (6)

where wt(v) denotes the Hamming weight of v and
Q(x) is the complementary error function; Q(x) =
∫ ∞

x (2π)−1/2 exp(−z2/2)dz.

Using the set Z(C) of zero neighbors in C, (3) and (4) can
be rewritten by

Pe = P





⋃

v∈Z(C)

E0→v



 (7)

≤
∑

v∈Z(C)

P [E0→v]. (8)

Inequality (8) is called a minimal union bound [8]. A minimal
union bound using the local weight distribution of C is
obtained in the same way as (6) [2]:

Pe ≤
n

∑

i=1

Li(C)Q

(

√

i
2Eb

N0

)

. (9)

The right-hand side of (9) is strictly smaller than that of (6).
Agrell pointed out in [1] that other bounds, related to the union
bound, such as Berlekamp’s tangential union bound [5], may
be improved in a similar fashion.
Zero neighbor appears in an optimal hard decision decoding

algorithms [12]. The number of zero neighbors in a code
determines the complexity of the decoding. This decoding
method is so called gradient-like decoding [4]. See [4] for
details.
Zero neighbors in a linear code have a link to secret-sharing

schemes using error-correcting codes. Massey showed that the
set of zero neighbors in the dual code completely specifies the
access structure of the secret-sharing scheme [15].

III. COMPUTATIONAL APPROACH TO DETERMINE LOCAL
WEIGHT DISTRIBUTION

In this section, a method for computing the local weight
distribution using the automorphism group of the code is
presented. In [16] and [17], the complexity for computing the
local weight distribution is reduced by using an invariance
property for cyclic permutations. This invariance property
for cyclic permutations can be generalized to an invariance
property for any group of permutations. Using the invariance
property for the larger group of permutations, we may reduce
the number of representative codewords. However, it is not
easy to obtain the representative codewords and the number
of the equivalent codewords.
In order to use the generalized invariance property, the

invariance property is applied to the set of cosets of a subcode
rather than the set of codewords. This application reduces
the complexity of finding the representatives, which is much
smaller than the complexity of checking whether every repre-
sentative is a zero neighbor or not. This idea is used in [10] for
computing the global weight distribution of extended binary
primitive BCH codes. In the following, we show that this idea
can be applicable for computing local weight distribution.

A. Invariance Property
For a permutation π and a set of vectors D, define the set

of the permuted vectors π[D] as

π[D] = {πv : v ∈ D}. (10)
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The automorphism group of a code C is the set of all
permutations by which C is permuted into C, and denoted
by Aut(C), i.e.,

Aut(C) = {π : π[C] = C}. (11)

An invariance property under the automorphism group of a
code is given in the following theorem.

Theorem 2 (Invariance property): For π ∈ Aut(C) and
v ∈ C, πv is a zero neighbor if and only if v is a zero
neighbor.

Proof: Suppose that v is a zero neighbor and πv is
not a zero neighbor. There exists a nonzero codeword v

′ ∈
C such that Supp(πv) " Supp(v′) from Lemma 1. Since
Aut(C) is a group, there exists v

′′ ∈ C such that v
′ = πv′′.

Thus Supp(πv) " Supp(πv′′), and Supp(v) " Supp(v′′),
contradicting the fact that v is a zero neighbor, from Lemma 1.

This theorem derives the following corollary.

Corollary 3: For v ∈ C, consider a set S = {πv : ∀π ∈
Aut(C)}. Then (1) if v is a zero neighbor, all codewords in
S are zero neighbors; otherwise, (2) all codewords in S are
not zero neighbors.

In order to use this generalized invariance property, we
apply the invariance property to the set of cosets of a subcode
rather than the set of codewords.

B. Local Weight Subdistribution for Cosets of Subcode
For a binary (n, k) linear code C and its linear subcode C′

with dimension k′, let C/C′ denote the set of cosets of C′ in
C, that is, C/C′ = {v + C′ : v ∈ C \ C′}. Then

|C/C′| = 2k−k′

, and C =
⋃

D∈C/C′

D. (12)

Definition 3 (Local weight subdistribution for cosets):
The local weight subdistribution for a coset D ∈ C/C′ (with
respect to C) is the weight distribution of zero neighbors
of C in D. The local weight subdistribution for D is
(|Z0(D)|, |Z1(D)|, . . . , |Zn(D)|), where

Zw(D) = {v ∈ D : Supp(v′) # Supp(v) for any

v
′ ∈ C \ {0, v}, and wt(v) is w} , (13)

with 0 ≤ w ≤ n.

Then, from (12), the local weight distribution of C is given
as the sum of the local weight subdistributions for the cosets
in C/C′, that is,

Lw =
∑

D∈C/C′

|Zw(D)|. (14)

The following theorem gives an invariance property under
permutations for cosets.

Theorem 3 (Invariance property for cosets): For D1, D2 ∈
C/C′, the local weight subdistribution for D1 and that for D2

are the same if there exists π ∈ Aut(C) such that π[D1] = D2.

Proof: For any codewords v ∈ D1, from Theorem 2,
πv ∈ D2 is a zero neighbor if and only if v is a zero neighbor.
Therefore, the local weight subdistribution for D1 and that for
D2 are the same.

This theorem is a condition for cosets having the same local
weight subdistribution. The following lemma gives the set of
all permutations by which every coset in C/C′ is permuted
into one in C/C′.

Lemma 3: For a linear code C and its linear subcode C′,

{π : π[D] ∈ C/C′ for any D ∈ C/C′} = Aut(C)∩Aut(C′).
(15)

Proof: Let π ∈ Aut(C) ∩ Aut(C′). For a coset v1 +
C′ ∈ C/C′, suppose that πv1 ∈ v2 + C′. For any codeword
v1 + u1 ∈ v1 + C′,

π(v1 + u1) = πv1 + πu1

= v2 + u2 + πu1, u2 ∈ C′,

= v2 + (u2 + πu1) ∈ v2 + C′. (16)

Thus, π[v1 + C′] = v2 + C′ ∈ C/C′. Then {π : π[D] ∈
C/C′ for any D ∈ C/C′} ⊇ Aut(C) ∩ Aut(C′).
Let π ∈ {ρ : ρ[D] ∈ C/C′ for any D ∈ C/C′}. For any

codeword v ∈ C, v must be in either coset in C/C′, and then
πv ∈ C. Thus, π ∈ Aut(C). C′ itself is one of cosets in C/C′.
For any codeword u ∈ C′, πu ∈ C′ because π[C′] = C′.
Thus, π ∈ Aut(C′). Then {π : π[D] ∈ C/C′ for any D ∈
C/C′} ⊆ Aut(C) ∩ Aut(C′).

Aut(C) ∩ Aut(C′) (or even Aut(C)) is generally not
known. Only subgroups of Aut(C) ∩ Aut(C′) are known.
Therefore, we use a subgroup.

Definition 4: Let Π ⊆ Aut(C) ∩ Aut(C′). For D1, D2 ∈
C/C′, we denote D1 ∼Π D2 if and only if there exists π ∈ Π
such that π[D1] = D2.

Lemma 4: The relation “∼Π” is an equivalence relation on
C/C′ if Π forms a group.

Proof: Let D1, D2, D3 ∈ C/C′.
(Reflexive: D1 ∼Π D1) Since the identity permutation π0 is
in Π, D1 ∼Π D1.
(Symmetric: D1 ∼Π D2 → D2 ∼Π D1) Suppose that D1 ∼Π

D2 and π[D1] = D2 for π ∈ Π. Since Π forms a group, there
exists ρ ∈ Π such that ρ[π[D1]] = D1. Then ρ[D2] = D1, and
D2 ∼Π D1.
(Transitive: D1 ∼Π D2, D2 ∼Π D3 → D1 ∼Π D3) Suppose
that D1 ∼Π D2 and D2 ∼Π D3. There exists π, ρ ∈ Π such
that π[D1] = D2, ρ[D2] = D3. Then D3 = ρ[D2] = ρπ[D1].
Since ρπ ∈ Π, D1 ∼Π D3.

When the set of cosets are partitioned into equivalence classes
by the relation “∼Π”, the local weight subdistributions for
cosets which belong to the same equivalence class are the
same.
We give a useful theorem for partitioning the set of cosets

into equivalence classes by the relation “∼Π.”

Theorem 4: Let Π ⊆ Aut(C) ∩ Aut(C′). For D1, D2 ∈
C/C′ and π ∈ Π, we have D1 ∼Π D2 if πv1 ∈ D2 for any
v1 ∈ D1.
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Proof: Let πv1 = v2 ∈ D2. Any codeword in D1 is
represented by v1 + v (v ∈ C′). Then

π(v1 + v) = πv1 + πv

= v2 + πv. (17)

Since π ∈ Aut(C′), πv is in C′. Thus π[D1] = D2.

From Theorem 4, in order to partition the set of cosets
into equivalence classes, we only need to check whether the
representative codeword of a coset is permuted into another
coset. After partitioning cosets into equivalence classes, the
local weight subdistribution for only one coset in each equiv-
alence class needs to be computed. Thereby the computational
complexity is reduced.

C. Outline of the Proposed Algorithm
On the basis of the method for partitioning the set of cosets

described in the previous section, we can compute the local
weight distribution as follows:
1) Choose a subcode C′ and a subgroup Π of permutations
of Aut(C) ∩ Aut(C′).

2) Partition C/C′ into equivalence classes with permuta-
tions in Π, and obtain the number of codewords in each
equivalence class.

3) Compute the local weight subdistributions for the rep-
resentative cosets in each equivalence class.

4) Sum up all the local weight subdistributions.

D. Partitioning Cosets into Equivalence Classes
Our implementation of Step 2) of the algorithm is based on

Theorem 4 and Lemma 4. Let H ′ be a parity check matrix of
C′ with

H ′ =

(

H0

H

)

, (18)

where H is a parity check matrix of C. H0 is an n × (k −
k′) matrix. In order to partition cosets efficiently, we use the
following condition:

π[v + C′] = v
′ + C′ iff πvHT

0 = v
′HT

0 , (19)

where HT
0 represents the transpose of H0.

Using a table with size 2k−k′ , we need to compute the
syndromes of length k − k′ for all the permuted coset leaders
to partition these cosets into equivalence classes. The com-
putational complexity of partitioning cosets into equivalence
classes is O(n(k−k′)2k−k′

|Π|). If Π forms a group, the actual
complexity would be much small. Suppose that π[v + C′] =
v
′ + C′. After we found the equivalence cosets of v + C′,
including v

′ + C′, we need not to find the equivalence cosets
for v

′ + C′ because the equivalence cosets of v
′ + C′ are

equal to that of v + C′ when Π forms a group. Then the
complexity for partitioning cosets into equivalence classes is
O(n(k−k′)e|Π|+2k−k′

) where e is the number of equivalence
classes in C/C′. The complexity O(2k−k′

) is for computing
syndromes and the bookkeeping operations for the 2k−k′

coset leaders. Since e seems to be much smaller than 2k−k′

,
although we cannot know e before running a coset partitioning

algorithm, the actual complexity for partitioning cosets into
equivalence classes would be much small when Π forms a
group.

E. Complexity
Here, we analyze the computational complexity of the

algorithm. Let C be an (n, k) linear code and C′ be an (n, k′)
linear subcode of C.
An efficient method for checking whether a codeword is a

zero neighbor or not is presented in [1]. This method is used
to check zero neighborship of codewords in [16] and [17]. We
also use this method to check zero neighborship.
1) Time complexity: The time complexity of checking one

codeword of the method in [1] is O(n2k). Since the number of
codewords in each coset is 2k′ , the total number of codewords
to be checked for zero neighborship is e2k′ , where e is the
number of the equivalence classes. Hence, the time complexity
of the proposed algorithm in Step 3 is O(n2k ·e2k′

). The time
complexity of partitioning cosets into equivalence classes in
Step 2 is O(n(k−k′)2k−k′

|Π|), as described in Section III-D.
Therefore, The time complexity of the entire algorithm is

O(n2k · e2k′

+ n(k − k′)2k−k′

|Π|). When k′ is chosen as
k′ > k/2, then 2k′

> 2k−k′ , and the complexity of partitioning
into equivalence classes is much smaller than of computing the
local weight subdistributions for cosets.
2) Space complexity: The space complexity of checking

a zero neighborship is very small, because we need space
to store only a generator matrix of C in the method in [1],
which is O(nk). On the other hand, the space complexity of
partitioning cosets into equivalence classes is much larger. We
need space to store the entries proportional to 2k−k′ , which is
O((k − k′)2k−k′

). We need O(n(n − k′)) space to store the
parity check matrices of C and C′. The space complexity of
the entire algorithm is O(n2 + (k − k′)2k−k′

).

F. Selection of the Subcode
In order to reduce the number of codewords that need to be

checked for zero neighborship, we should choose the subcode
C′ for which the number of permutations in Π ⊆ Aut(C) ∩
Aut(C′) is larger. However, the complexity of partitioning
cosets into equivalence classes may become larger.
Therefore, if there are several subcodes with the same

Π, then the subcode with the smaller dimension should be
chosen to minimize the number of codewords that need to be
checked, as long as the complexity of partitioning cosets into
equivalence classes is relatively small.

G. Target Codes for the Computational Approach
The proposed algorithm can be applied to codes that are

closed under a group of permutations and whose subcodes
are also closed under the same group of permutations. The
algorithm is suitable for extended primitive BCH codes and
Reed-Muller codes. Extended primitive BCH codes are closed
under the affine group and Reed-Muller codes are closed under
the general affine group [14].
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Fig. 1. The code tree of the code {0000, 0011, 1001, 1010}.

IV. IMPROVEMENTS OF THE COMPUTATIONAL APPROACH

In this section, some improvements of the proposed algo-
rithm for computing the local weight distribution are shown.

A. Code Tree Structure
We consider reducing the complexity of checking zero

neighborship in a coset of C′ by using the code tree structure
of the coset. For simplicity, we consider C′ itself as the coset.
For v ∈ C′, let

C(v) = {u |u ∈ C, Supp(u) ⊆ Supp(v)}. (20)

A codeword v is a zero neighbor if and only if C(v) = {0, v}.
Thus, checking the zero neighborship of v is examining
whether the dimension of C(v), denoted by dim(C(v)), is
one or not. For v ∈ C′ and i with 1 ≤ i ≤ n, let

C(v, i) = {u |u ∈ C, Supp(u) ∩ {1, . . . , i}

⊆ Supp(v) ∩ {1, . . . , i}}. (21)

Therefore, C(v, n) = C(v). A typical implementation to
construct C(v) is as follows: Construct C(v, 1) from C, and
C(v, 2) from C(v, 1), and C(v, 3) from C(v, 2), and so on.
This procedure can be done by using the generator matrix of
C [1].
A code tree of a binary (n, k) code is an edge-labeled tree

with depth n. Either 0 or 1 is labeled on each edge. For the
code tree of a code C, the sequence of edge labels along each
path from the root to a leaf is a codeword of C. There are
2k leaves on the tree. For example, the code tree of C =
{0000, 0011, 1001, 1010} is shown in Fig. 1.
Now, we consider reducing the complexity for computing

C(v) for v ∈ C′. For i with 1 ≤ i ≤ n, let

C′f
i = {(u1, u2, . . . , un) ∈ C′ |uj = 0 with 1 ≤ j ≤ i}.

(22)
C′f

i is the future subcode of C′ at time i. For v ∈ C′, v +C′f
i

shares the same path to depth i in the code tree. This means, if
we construct C(v, i) once, we do not need to construct C(u, i)
for other u ∈ v + C′f

i later, because C(v, i) = C(u, i). We
can save the computational complexity of constructingC(u, i)
from C for each u ∈ v + C′f

i. However, to compute C(u, i)
for all u ∈ C′ along with the code tree is space-consuming.
Therefore, we take the following method for checking zero
neighborship of them.

• Choose an integer i with 1 ≤ i ≤ n.

• For each coset v +C′f
i ∈ C′/C′f

i, construct C(v, i) from
C.
– For each u ∈ v + C′f

i, construct C(u) from C(v, i)
and investigate dim(C(u)).

We can construct the generator matrix of C′f
i by row oper-

ations of the generator matrix of C′ (see Fig. 2). In Fig. 2,
the dimension of C′f

i is k′f
i. We should choose i properly in

order to make C′f
i large and the complexity of examining the

dimension of C(u) from C(v, i) for each u ∈ C′f
i small; that

is, make k′f
i large and i large. The k′f

i×i zero matrix in Fig. 2
varies depending on the code tree structure of C′. For extended
binary primitive BCH codes, permuting the symbol positions
of codewords properly makes the k′f

i × i matrix larger [13].
To choose i properly, we should estimate the effect by using
the above technique.
Estimating precisely how the computational complexity is

reduced is not easy. We will estimate the effect roughly.
When dim(C(u)) = 1, dim(C(u)) is found to be one before
constructing C(u), since C(u, j) for i ≤ j ≤ n may be equal
to C(u) for certain i with i < n. Let iend be the average
position i at which dim(C(v, i)) is found to be one or not for
v ∈ C. We observe that the number of zero neighbors is much
more than that of non-zero-neighbors. For example, the rate of
the number of zero neighbors to the number of all codewords
is 0.9994 · · · for the (128, 43) primitive BCH code. For any
v ∈ C and 1 ≤ i ≤ iend, assume:

dim(C(v, i)) =
iend − i

iend
(k − 1) + 1. (23)

This equation means that dim(C(v, i)) decreases linearly with
i and is equal to k (or 1) when i = 0 (or i = iend).
The complexity of computing C(v, i + 1) from C(v, i) is
proportional to dim(C(v, i)). Thus, the complexity is given
as a · dim(C(v, i)) where a is a nonzero constant.
Consider the case i0 is chosen as i for using the technique

described in this section. Let U1 be the complexity for comput-
ing C(v), which is equal to the complexity for checking zero
neighborship without the technique, U2 be the complexity for
computing C(v, iend) from C(v, i0), and U3 be the average
complexity for computing C(v, i0). Then

U1 =
a(dim(C) − 1) iend

2
=

a(k − 1)iend

2
, (24)

U2 =
a(dim(C, i0) − 1)(iend − i0)

2

=
a(iend − i0)2(k − 1)

2 iend
, (25)

U3 = U1 − U2. (26)

Let Ri0 be the relative complexity of checking zero neighbor-
ship with the technique and without the technique. Then

Ri0 =
U3 + U2 × 2k′f

i0

U1 × 2k′f
i0

=

(

1 −
U2

U1

)

1

2k′f
i0

+
U2

U1
, (27)

where
U2

U1
=

(

iend − i0
iend

)2

. (28)
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Fig. 2. A way of constructing C′f
i from the generator matrix G′.
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Fig. 3. Relative complexity Ri with iend = 100 and the dimension k′f
i

of C
f
i for the (128, 50) extended BCH code using the (128, 29) code as a

subcode.

We estimated Ri0 for the case of the (128, 50) extended
BCH code. In this case, the (128, 29) code is chosen as the
subcode C′ and the number of representative cosets is 258.
To determine iend, we use 215 × 258 codewords by choosing
215 codewords randomly from each of the 258 representative
cosets. For every codeword v in such codewords, we examined
the position in which dim(C(v)) is found to be one or not.
Then the average was 100, that is, iend = 100. Since k′f

i0

depends on i0, we investigated k′f
i0 and computed Ri0 for

every i0 (1 ≤ i0 ≤ n) (see Fig. 3). In this investigation,
we use the permutation technique for making k′f

i0 and i0
larger proposed in [10] for extended BCH codes. From Fig. 3,
the complexity of checking zero neighborship would reduced
by 1/2 for i0 = 33 and 48. k′f

i0 = 5, 2 for i0 = 33, 48,
respectively. Actually, for the (128, 50) extended BCH code
and the (128, 29) extended BCH subcode, the complexity is
reduced by about 1/2 when we choose i0 = 48.
If the dimension of the subcode is small, k′f

i may become
small and the effect of using the code tree structure is small.
We should choose the subcode by considering the effect of
using the code tree structure.

B. Invariance Property in Cosets

In the proposed algorithm, the invariance property for zero
neighborship is applied to the set of cosets of a subcode
rather than the set of codewords. This reduces the complexity
of finding the representatives. However, we do not use the
invariance property completely. That is, the invariance property
is not used for codewords in cosets. In computing the local
weight subdistribution for a coset, we can apply the invariance

property to codewords in the coset. An invariance property in
a coset is given in the following theorem.

Theorem 5: For a coset v + C′ ∈ C/C′, π ∈ {ρ : ρv ∈
v + C′}, and u ∈ v + C′, πu is a zero neighbor in C if and
only if u is a zero neighbor in C.

No efficient way is known for generating the representative
codewords in a coset as in a code. Therefore, we use a similar
method: Just as we applied the invariance property to the set
of cosets in a code rather than the set of codewords in the
code, we apply the invariance property to the set of cosets in
a coset rather than the set of codewords in the coset. Thus,
we consider a coset v + C′ ∈ C/C′ the set of cosets of C′′,
where C′′ is a subcode of C′.
For a coset v + C′ ∈ C/C′, let (v + C′)/C′′ denote the

set of all cosets of C′′ in v + C′, that is, (v + C′)/C′′ =
{v + u + C′′ : u ∈ C′ \ C′′}. Then

|(v + C′)/C′′| = 2k′−k′′

and v + C′ =
⋃

E∈(v+C′)/C′′

E,

where k′ and k′′ are the dimensions of C′ and C′′. We also call
the weight distribution of zero neighbors in E ∈ (v +C′)/C′′

the local weight subdistribution for E. The following theorem
gives an invariance property for cosets in (v + C′)/C′′.

Theorem 6: For E1, E2 ∈ (v + C′)/C′′, the local weight
subdistribution for E1 and that for E2 are the same if there
exists π ∈ {ρ : ρv ∈ v + C′, ρ ∈ Aut(C) ∩ Aut(C′)} such
that π[E1] = E2.

We consider partitioning (v + C′)/C′′ into equivalence
classes. Permutations which are used to partition cosets into
equivalence classes are presented in the following lemma.

Lemma 5: For a coset v + C′ ∈ C/C′,

{π : π[E] ∈ (v + C′)/C′′ for any E ∈ (v + C′)/C′′}

= {ρ : ρv ∈ v + C′, ρ ∈ Aut(C) ∩ Aut(C′) ∩ Aut(C′′)}.

(29)

Proof: Let π ∈ {ρ : ρv ∈ v + C′, ρ ∈ Aut(C) ∩
Aut(C′)∩Aut(C′′)}. For a coset v+v1+C′′ ∈ (v+C′)/C′′,
suppose that πv = v + v2, v2 ∈ C′ and πv1 = v3 ∈ C′. For
any codeword v + v1 + u1 ∈ v + v1 + C′′, u1 ∈ C′′,

π(v + v1 + u1) = πv + πv1 + πu1

= v + v2 + v3 + u2, πu1 = u2 ∈ C′′

= v + (v2 + v3) + u2

∈ v + (v2 + v3) + C′′. (30)
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Thus, π[v + v1 + C′′] = v + (v2 + v3) + C′′ ∈ (v + C′)/C′′.
Therefore, {π : π[E] ∈ (v + C′)/C′′ for any E ∈ (v +
C′)/C′′} ⊇{ ρ : ρv ∈ v + C′, ρ ∈ Aut(C) ∩ Aut(C′) ∩
Aut(C′′)}.
Let π ∈ {ρ : ρ[E] ∈ (v + C′)/C′′ for any E ∈ (v +

C′)/C′′}. For any codeword v + v1 ∈ v + C′, v + v1 must
be in either coset in (v + C′)/C′′, thus, π(v + v1) ∈ v + C′′

and π ∈ Aut(C). For v + v1 + C′′ ∈ (v + C′)/C′′, let
v + v1 + u1, v + v1 + u2 ∈ v + v1 + C′′. π(v + v1 + u1) =
πv+πv1+πu1 and π(v+v1+u2) = πv+πv1+πu2 must be
in the same coset of v+v2+C′′. Hence, π ∈ Aut(C′) and π ∈
Aut(C′′). Therefore, {π : π[E] ∈ (v + C′)/C′′ for any E ∈
(v +C′)/C′′} ⊆ {ρ : ρv ∈ v +C′, ρ ∈ Aut(C)∩Aut(C′)∩
Aut(C′′)}.

In order to partition cosets into equivalence classes, we
should use permutations presented in Lemma 5. Although
Aut(C), Aut(C′), and Aut(C′′) are known, we should obtain
permutations π that satisfy πv ∈ v + C′. However, finding
such permutations is difficult in general. We show that we
have a clue as to finding the permutations for a coset of a
Reed-Muller code.
Let RM(r, m) denote the r-th order Reed-Muller code

of length 2m. For instance, we consider the case of the
(256, 93) third-order Reed-Muller code, denoted by RM(3, 8).
The 32 equivalence classes of RM(3, 8)/RM(2, 8) are pre-
sented in [11]. We choose RM(1, 8) as a subcode of
RM(2, 8). Then the general affine group [14] is a subgroup of
Aut(RM(3, 8))∩Aut(RM(2, 8))∩Aut(RM(1, 8)). For each
coset in RM(3, 8)/RM(2, 8), the estimated time for comput-
ing the local weight subdistribution is about 54 days using
the proposed algorithm in Section III and its improvement in
Section IV-A. The total estimated time is about 1700 days. To
compute the local weight distribution of RM(3, 8) in practical
time, we should find the permutations π that satisfy πv ∈
v + RM(2, 8) for each 32 representative cosets v + RM(2, 8)
in RM(3, 8)/RM(2, 8). For instance, one of the representative
cosets is x1x2x3 + RM(2, 8) (we use a Boolean polyno-
mial representation for Reed-Muller codewords [14]). For
this coset, the permutations that does not permute x1, x2, x3

but permute the other variables x4, x5, . . . , x8 are candidate
permutations that satisfy π(x1x2x3) ∈ x1x2x3 + RM(2, 8).
Such permutations do exist in the general affine group. If we
could find more than 50 permutations π that satisfy πv ∈
v + RM(2, 8) for each 32 representative cosets, the local
weight distribution of RM(3, 8) may be computable.

V. THEORETICAL APPROACH TO DETERMINE LOCAL
WEIGHT DISTRIBUTION

In this section, we consider relations between the local
weight distributions of a binary linear code, its extended code,
and its even weight subcode.

A. General Relation
Consider a code C of length n, its extended code Cex, and

its even weight subcode Ceven. For a codeword v ∈ C, let
v

(ex) be the corresponding extended codeword in Cex. We
define a decomposable codeword (see Fig. 4).

Fig. 4. Examples of a decomposable codeword and an indecomposable
codeword.

Definition 5 (Decomposable codeword): v ∈ C is called
decomposable if v can be represented as v = v1 + v2 where
v1, v2 ∈ C and Supp(v1) ∩ Supp(v2) = ∅.

From Lemma 1, v is not a zero neighbor if and only if v is
decomposable. For even weight codewords, we introduce an
only-odd-decomposable codeword and an even-decomposable
codeword.

Definition 6: Let v ∈ C be a decomposable codeword with
even wt(v). That is, v is not a zero neighbor in C. v is said to
be only-odd-decomposable if all the decompositions of v are
of the form v1+v2 with the odd weight codewords v1, v2 ∈ C.
Otherwise, v is said to be even-decomposable.

When v is even-decomposable, there is a decomposition of v,
v1 + v2, such that both wt(v1) and wt(v2) are even. Then
v

(ex) is decomposable into v
(ex)
1 + v

(ex)
2 . On the other hand,

for an only-odd decomposable codeword v = v1+v2, v(ex) is
not decomposable into v

(ex)
1 + v

(ex)
2 for any decompositions.

The relation between C and Cex with respect to zero
neighborship is given in the following theorem, which is also
summarized in Table I.

Theorem 7: 1) For a zero neighbor v in C, v
(ex) is a

zero neighbor in Cex.
2) For a codeword v which is not a zero neighbor in C,
the following a) and b) hold:
a) When wt(v) is odd, v

(ex) is not a zero neighbor
in Cex.

b) When wt(v) is even, v
(ex) is a zero neighbor in

Cex if and only if v is only-odd-decomposable in
C.

Proof: 1) Suppose that v
(ex) is not a zero neighbor in

Cex. Then v
(ex) is decomposable into v

(ex)
1 +v

(ex)
2 . Hence, v

is decomposable into v1 + v2, contradicting the indecompos-
ability of v.
2) Suppose that v is decomposed into v = v1+v2. a) Since

wt(v) is odd, the sum of the parity bits in v
(ex)
1 and v

(ex)
2

is one. Also, the parity bit in v
(ex) is one. Then v

(ex) is
decomposable into v

(ex)
1 + v

(ex)
2 , and v

(ex) is not a zero
neighbor in Cex. b) Since wt(v) is even, the parity bit in v

(ex)

is zero. (If part) Suppose that v
(ex) is not a zero neighbor in

Cex. Then there exists a decomposition v
(ex) = v

(ex)
1 + v

(ex)
2 .

Because the parity bit in v
(ex) is zero, the parity bits in

v
(ex)
1 and v

(ex)
2 must be zero. Thus, v is even-decomposable

into v1 + v2, contradicting the assumption that v is only-
odd-decomposable. (Only if part) Suppose that v is even-
decomposable. Then there is a decomposition such that the
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TABLE I
ZERO NEIGHBORSHIP OF v IN A LINEAR BLOCK CODE, v(ex) IN ITS EXTENDED CODE, AND v IN ITS EVEN WEIGHT SUBCODE.

v in C v
(ex) in Cex v in Ceven

Zero neighborship Weight Decomposability Zero neighborship Theorem 7 Zero neighborship Theorem 10
Odd N/A N/AYes Even Not decomposable Yes 1) Yes 1)
Odd Decomposable No 2a) N/A N/A

No Even Only-odd-decomposable Yes Yes
Even Even-decomposable No 2b) No 2)

Fig. 5. Examples of an even-decomposable codeword and an odd-
decomposable codeword mentioned in the proof of Theorem 7-2b).

parity bits in both v
(ex)
1 and v

(ex)
2 are zero. For such the

decomposition, v(ex) is decomposable into v
(ex)
1 + v

(ex)
2 , and

v
(ex) is not a zero neighbor in Cex. (see Fig. 5).

From 2b) of Theorem 7, there may be codewords that are
not zero neighbors in C although their extended codewords
are zero neighbors in Cex. Such codewords are the only-odd
decomposable codewords. For investigating relations of local
weight distributions between a code and its extended code,
only-odd decomposable codewords are important.
The following theorem is a direct consequence of Theo-

rem 7.

Theorem 8: For a code C of length n,

L2i(Cex) = L2i−1(C) + L2i(C) + N2i(C), 0 ≤ i ≤ n/2,
(31)

where Nj(C) is the number of only-odd decomposable code-
words with weight j in C.

From Theorem 8, if no only-odd decomposable codeword
exists in C, then the local weight distributions of Cex are
obtained from that of C. Next, we give a useful sufficient
condition under which no only-odd-decomposable codeword
exists.

Theorem 9: If all the weights of codewords in Cex are
multiples of four, no only-odd-decomposable codeword exists
in C.

Proof: If v ∈ C is an only-odd-decomposable codeword
and is decomposed into v1 +v2, the weights of v1 and v2 can
be represented as wt(v1) = 4i−1 and wt(v2) = 4j−1 where
i and j are integers. Then wt(v) = wt(v1 + v2) = wt(v1) +
wt(v2) = (4i− 1)+ (4j − 1) = 4i+4j − 2, contradicting the
fact that wt(v) is a multiple of four.

For example, all the weights of codewords in the (128, k)
extended primitive BCH code with k ≤ 57 are multiples of
four. The parameters of the Reed-Muller codes with which all

the weights of codewords are multiples of four are given by
Corollary 13 of Chapter 15 in [14]. From the corollary, the
third-order Reed-Muller codes of length n ≥ 128 have only
codewords whose weights are multiples of four.
Although the local weight distribution ofCex for these codes

can be obtained from that of C by using Theorem 8, in order
to obtain the local weight distribution of C from that of Cex,
we need to know the number of zero neighbors with parity
bit one. In Section V-B, we will show a method to obtain the
number of zero neighbors with parity bit one for a class of
transitive invariant codes.
A similar relation to that between C and Cex holds between

C and Ceven. This relation is given in Theorem 10 without
proof (see Table I).

Theorem 10: 1) For an even weight zero neighbor v in
C, v is a zero neighbor in Ceven.

2) For an even weight codeword v which is not a zero
neighbor in C, v is a zero neighbor in Ceven if and only
if v is only-odd-decomposable in C.

From Theorem 10, we derive Theorem 11.

Theorem 11: For a code C of length n,

L2i(Ceven) = L2i(C) + N2i(C), 0 ≤ i ≤ n/2. (32)

B. Relation for Transitive Invariant Extended Codes
A transitive invariant code is a code which is invariant under

a transitive group of permutations. A group of permutations
is said to be transitive if for any two symbols in a codeword
there exists a permutation that interchanges them [18]. The
extended primitive BCH codes and Reed-Muller codes are
transitive invariant codes. For a transitive invariant Cex, a
relation between the global weight distributions of C and Cex

is presented in Theorem 8.15 in [18]. A similar relation holds
for local weight distribution.

Lemma 6: If Cex is a transitive invariant code of length
n + 1, the number of zero neighbors with parity bit one is

w
n+1Lw(Cex).

Proof: This lemma can be proved in a similar way as the
proof of Theorem 8.15. Arrange all zero neighbors with weight
w in a column. Next, interchange the j-th column and the last
column, which is the parity bit column, for all these codewords
with the permutation. All the resulting codewords have weight
w and must be the same as the original set of codewords.
Thus, the number of ones in the j-th column and that in the
last column are the same. Denote this number lw, which is
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the same as the number of zero neighbors of weight w with
parity bit one. Then the number of total ones in the original
set of codewords is (n + 1) lw, or Lw(Cex) times the weight
w. Thus, (n+1) lw = wLw(Cex), and lw = w

n+1Lw(Cex).

It is clear that there are n+1−w
n+1 Lw(Cex) zero neighbors

with weight w whose parity bit is zero from this lemma. The
following theorem is obtained from Theorem 7 and Lemma 6.

Theorem 12: If Cex is a transitive invariant code of length
n + 1,

Lw(C) =



















w + 1

n + 1
Lw+1(Cex), for odd w,

n + 1 − w

n + 1
Lw(Cex) − Nw(C), for even w.

(33)
If there is no only-odd-decomposable codeword in a transitive
invariant code C, then we have:

Lw(C) =
n + 1 − w

n + 1
Lw(Cex), for even w. (34)

Therefore, for a transitive invariant code Cex having no
only-odd-decomposable codeword in C, the local weight dis-
tributions of C can be obtained from that of Cex by using (33)
and (34) in Theorem 12. After computing the local weight
distribution of C, that of Ceven can be obtained by using
Theorem 11.

VI. OBTAINED LOCAL WEIGHT DISTRIBUTIONS
Using the algorithm described in Sections III and IV, we

compute the local weight distributions of extended primitive
BCH codes and Reed-Muller codes.
The local weight distributions of the (128, k) extended

primitive BCH codes for k ≤ 50 are obtained and shown in
Table II. It took about 440 hours (CPU time) to compute the
distribution of the (128, 50) code with a 1.6 GHz Opteron
processor. In this case, the (128, 29) code is used as the
subcode, and it took only one minute to partition cosets into
equivalence classes.
We also apply the proposed algorithm to the third-order

Reed-Muller code of length 128. We use the second-order
Reed-Muller code as the subcode. The representative code-
words of cosets for this case are presented in [11]. A method
to obtain the number of equivalent cosets to the representative
cosets are presented in [19]. Thus, the process of obtaining the
representative cosets and the number of equivalent cosets are
different from that for extended primitive BCH codes. Note
that the computing time for this process is vanishingly small.
The local weight distributions of the (127, k) primitive

BCH codes for k ≤ 50 and the punctured third-order Reed-
Muller code of length 127 are obtained from those of the
corresponding extended codes by using Theorems 11 as shown
in Table IV. If we could obtain the local weight distributions
of the (128, 57) extended primitive BCH code and the third-
order Reed-Muller codes of length 256 and 512, the local
weigh distributions of the (127, 57) primitive BCH code and
the punctured third-order Reed-Muller codes of length 256 and
512 could be determined by using Theorems 11 and 12.

The local weight distributions of even weight subcodes of
the (127, k) primitive BCH codes for k = 36, 43, 50 and
the punctured third-order Reed-Muller code of length 127
are obtained from those of the corresponding original codes
shown in Table IV by using Theorem 11. Note that Ni(C) in
Theorem 11 is equal to zero for all i in these cases.

VII. CONCLUSIONS
In this paper, some methods to determine the local weight

distribution of binary linear block codes have been studied.
For the computational approach, an algorithm for computing

the local weight distribution using the automorphism group of
a code has proposed. In this algorithm, a code is considered
a set of cosets of a linear subcode. The set of cosets are par-
titioned into equivalence classes with the invariance property
for zero neighborship under a group of permutations. The local
weight distribution is obtained by computing the local weight
subdistributions for each representative coset. The algorithm
can be applied to codes closed under a group of permutations.
Extended primitive BCH codes are closed under the affine
group and Reed-Muller codes are closed under the general
affine group. The algorithm is applied to these codes, and we
determined the local weight distributions for some of these
codes.
For the theoretical approach, relations between the local

weight distribution of a code, its extended code, and its
even weight subcode were studied. Only-odd decomposable
codewords are key codewords when we intend to determine
the local weight distribution of an extended code from that
of the original code, or vice versa. A sufficient condition
is derived under which no only-odd decomposable codeword
exists. The local weight distributions for some of primitive
BCH codes, and punctured Reed-Muller codes, and their
even weight subcodes are determined from those of extended
primitive BCH codes and Reed-Muller codes.
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