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Leakage-Resilience of Stateless/Stateful Public-Key Encryption
from Hash Proofs∗∗

Manh Ha NGUYEN†a), Nonmember, Kenji YASUNAGA†∗b), and Keisuke TANAKA†c), Members

SUMMARY We consider the problem of constructing public-key en-
cryption (PKE) schemes that are resilient to a-posteriori chosen-ciphertext
and key-leakage attacks (LR-CCA2). In CTYPTO’09, Naor and Segev
proved that the Naor-Yung generic construction of PKE which is secure
against chosen-ciphertext attack (CCA2) is also secure against key-leakage
attacks. They also presented a variant of the Cramer-Shoup cryptosystem,
and showed that this PKE scheme is LR-CCA2-secure under the decisional
Diffie-Hellman assumption. In this paper, we apply the generic construc-
tion of “Universal Hash Proofs and a Paradigm for Adaptive Chosen Ci-
phertext Secure Public-Key Encryption” (EUROCRYPT’02) to generalize
the above work of Naor-Segev. In comparing to the first construction of
Naor-Segev, ours is more efficient because of not using simulation-sound
NIZK. We also extend it to stateful PKE schemes. Concretely, we present
the notion of LR-CCA2 attack in the case of stateful PKE, and a generic
construction of stateful PKE that is secure against this attack.
key words: public key encryption, hash proof system, key-leakage, chosen-
ciphertext attack

1. Introduction

Key-leakage attacks. Traditionally, the security of crypto-
graphic schemes has been analyzed in an idealized setting,
where anadversary only sees the specified input/output be-
havior of a scheme, but has no other access to its internal
secret state. Unfortunately, in the real world, an adversary
may often learn some partial information about secret state
via various key-leakage attacks such as side-channel attacks
or cold-boot attack. Schemes that are proven secure in an
idealized setting, without key leakage, may become com-
pletely insecure if the adversary learns even a small amount
of information about the secret key.

In 2009, Akavia, Goldwasser, and Vaikuntanathan [1]
introduced the notion of leakage resiliency and the first
leakage-resilient chosen-plaintext secure scheme under the
LWE assumption. Then, Naor and Segev [12] extended this
framework to the setting of chosen-ciphertext attacks (LR-
CCA2). On the theoretical side, they proved that the Naor-
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Yung paradigm is applicable in this setting as well, and ob-
tained as a corollary encryption schemes that are LR-CCA2-
secure with the leakage rate of 1 − o(1) of the secret-key
length. On the practical side, they proved that variants of
the Cramer-Shoup cryptosystem are LR-CCA1-secure with
the leakage rate of 1/4, and LR-CCA2-secure with the leak-
age rate of 1/6.

In 2010, Dodis et al. [9] proposed an efficient encryp-
tion scheme that is LR-CCA2-secure with the leakage rate
of 1 − o(1) of the secret-key length. Their scheme relies
on regular non-interactive zero-knowledge, which can be in-
stantiated using the powerful Groth-Sahai techniques.

Stateful public-key encryption. In 2006, Bellare, Kohno,
and Shoup [4] proposed the first model of stateful public-
key encryption (StPE). The main goal of the StPE schemes
is to reduce the cost of PKE by allowing a sender to main-
tain state that is reused across different encryptions. For
example, one can obtain a stateful version of the ElGamal
encryption in which a message M is encrypted to (gr, grxM)
for public key gx by maintaining the random value r and its
corresponding value gr as state so that gr does not need to
be computed each time.

Reducing the computational cost of PKE is of particu-
lar importance for low-power mobile devices where compu-
tational resources are constrained (such as PDA and mobile
phones) or sensors communicating with the relatively pow-
erful servers or base stations [10], [13]. Due to the efficiency
gained from maintaining state, StPE schemes have potential
to be employed in these settings. But, even in the environ-
ments that provide reasonable amount of computational re-
sources, it is preferable to speed up public key operation.

In 2008, Baek, Zhou, and Bao [2] presented generic
constructions of StPE, built several new StPE schemes
and explained existing ones using their generic construc-
tions. Some of them are built by using “identity-based
technique” whereby one can construct PKE schemes secure
against chosen-ciphertext attack in the standard model from
identity-based encryption schemes.

Our contributions. In the paper [12], Naor and Segev
proved that a variant of the Cramer-Shoup cryptosystem [7]
is secure against LR-CCA2 attack. This LR-CCA2-secure
scheme is based on the hardness of the decisional Diffie-
Hellman problem. From this idea, we make the following
contributions in this paper:

1. We present a generic construction of a stateless PKE
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that is resilient to LR-CCA2 attack. This is the con-
struction which generalizes Naor-Segev’s result [12]
using hash proof system (HPS). In this construction,
we use the combination of any 1-universal HPS that
satisfies the condition of a key-leakage extractor and
any 2-universal HPS with some condition on the length
of proof. −See Sect. 4.2.

2. We present the notion of LR-CCA2 attack in the case of
StPE. Essentially, this notion is the same as that in the
case of stateless PKE. We also present a generic con-
struction of StPE that is secure against this attack. In
this construction, we use the combination of two HPSs
as in the case of stateless PKE and an IND-CCA-secure
symmetric encryption scheme. This is also a new ap-
proach to achieve CCA2-secure StPE. −See Sect. 4.3.

These constructions do not rely on additional computational
assumptions, and the resulting schemes are as efficient as
the underlying HPS. Existing constructions of HPS (see, for
example, [7], [11]) imply that our construction can be based
on a variety of number-theoretic assumptions, including the
decisional Diffie-Hellman assumption and its progressively
weaker d-Linear variants, the quadratic residuosity assump-
tion, and Paillier’s composite residuosity assumption.

In comparing to the existing LR-CCA2-secure stateless
PKE schemes [9], [12], ours is more efficient because of not
using non-interactive zero-knowledge (NIZK). The scheme
of Naor-Segev [12] is based on the Naor-Yung paradigm
which makes use of the so-called simulation-sound NIZK
(ss-NIZK). Informally, ss-NIZK proofs remain sound even
if the attacker can see simulated proofs of arbitrary (even
false) statements. It is well-known that this is a very ineffi-
cient primitive. Whereas, the scheme of Dodis et al. [9] uses
Groth-Sahai’s NIZKs which are only known for a pretty re-
strictive class or languages in bilinear groups. In spite of
the recent advances in implementation technique, compared
with standard operations such as modular exponentiation in
finite fields, the bilinear map computation is still considered
as a rather expensive operation.

Our construction of stateless PKE is LR-CCA2-secure
with the leakage rate depending on the parameters of the
underlying HPS. The Naor-Segev scheme [12] is an effi-
cient instantiation which is LR-CCA2-secure with the leak-
age rate of 1/6 of the secret-key length. This rate is not
as good as the result proposed in [9], which is LR-CCA2-
secure with the leakage rate of 1 − o(1), but it is an im-
portant result for us to construct the generic construction of
StPE that is resilient to LR-CCA2 attack. To the best of our
knowledge, this is the first generic construction of StPE that
is secure against this attack.

R-. We present notations, definitions, and tools in
Sect. 2. The definitions of LR-CCA2 security in both cases
of stateless and stateful PKE appear in Sect. 3. In Sects. 4
and 5, we describe our generic constructions and their con-
crete example, respectively. Finally, we conclude in Sect. 6.

2. Preliminaries

In this section we present notions, definitions, and tools that
are used in our constructions. Let n be the security param-
eter of the schemes, Ut the uniform distribution of {0, 1}t
(where t ∈ N), and U(S) the uniform distribution of the set

S. We denote by s
$←− S the assignment of a uniformly dis-

tributed random element from the set S to the variable s. We
use negl(n) to denote a negligible function in n.

The statistical distance between two random variables
X and Y over a finite domain Ω is ∆(X, Y) = 1

2Σω∈Ω|Pr[X =
ω]−Pr[Y = ω]|. We also write ∆(x, y) instead of ∆(X, Y). We
say that two variables are ε-close if their statistical distance
is at most ε. The min-entropy of a random variable X is
H∞(X) = −log(maxxPr[X = x]).

Dodis et al. [8] formalized the notion of average min-
entropy that captures the remaining unpredictability of a ran-
dom variable X conditioned on the value of a random vari-
able Y , formally defined as follows:

H̃∞(X|Y) = −log
(
Ey←Y

[
2−H∞(X|Y=y)]) .

The average min-entropy corresponds exactly to the optimal
probability of guessing X, given knowledge of Y . The fol-
lowing bound on average min-entropy was proved in [8]:

Lemma 1 ([8]): If Y has 2r possible values and Z is any
random variable, then H̃∞(X|Y, Z) ≥ H∞(X|Z) − r.

One of the main tools in our constructions is a strong ran-
domness extractor. The following definition naturally gen-
eralizes the standard definition of a strong extractor to the
setting of average min-entropy:

Definition 1 ([8]): A function Ext : {0, 1}n × {0, 1}t →
{0, 1}m is an average-case (k, ε)-strong extractor if for all
pairs of random variables (X, I) such that X ∈ {0, 1}n and
H̃∞(X|I) ≥ k it holds that

∆((Ext(X,Ut),Ut, I), (Um,Ut, I)) ≤ ε.

Hash proof systems. We review the framework of HPS,
introduced by Cramer and Shoup [7], where HPS is consid-
ered as key-encapsulation mechanisms (using the notation
of Naor and Segev [12]).

Let X, L,W be non-empty sets, such that L is a proper
subset of X, and RL ⊂ X ×W be a binary relation. For x ∈ X
and w ∈ W with (x, w) ∈ RL, we say that w is a witness for
x. Note that it would be quite natural to require that for all
x ∈ X, we have (x, w) ∈ RL for some w ∈ W if and only if
x ∈ L, and that the relation RL is efficiently computable. We
can also view X as the set of all ciphertexts, L as the set of
all valid ciphertexts (i.e., those generated appropriately with

the corresponding witness). We denote by (x, w)
$←− RL the

instance sampling algorithm of L, i.e. choose a random pair
(x, w) such that x ∈ X, w ∈ W, and (x, w) ∈ RL.

A hash proof system HPS = (Param,KGen, Pub, Priv)
consists of four algorithms that run in polynomial time. The
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algorithm Param(1n) generates system parameter sp. We
denote by SKn and PKn the sets of secret keys and public
keys that are produced by KGen(sp). That is, KGen(sp) :
{0, 1}∗ → SKn × PKn for every n ∈ N. The algorithm Pub
receives as input a public key pk ∈ PKn, a valid ciphertext
x ∈ L, and a witness w of the fact that x ∈ L, then outputs
the encapsulated key π ∈ Π, where Π denotes the set of
encapsulated symmetric keys. The algorithm Priv receives
as input a secret key sk ∈ SKn and a ciphertext x ∈ X, then
outputs the encapsulated key π.

Consider the probability space defined by choosing sk
randomly from the set of secret keys. We say that an HPS is
1-universal for language L if for all x ∈ X \ L and π ∈ Π, it
holds that

Pr[Priv(sk, x) = π] =
1
|Π| .

We say that an HPS is 2-universal for language L if for all
x, x∗ ∈ X and π, π∗ ∈ Π, with x ! L ∪ {x∗}, it holds that

Pr[Priv(sk, x) = π | Priv(sk, x∗) = π∗] =
1
|Π| .

It is easy to see that, if HPS = (Param,KGen, Pub, Priv) is
1-universal, then

∆((pk, x, Priv(sk, x)), (pk, x,U(Π))) ≤ negl(n),

and if HPS is 2-universal, then

∆((pk, x, x∗, π∗, Priv(sk, x)),

(pk, x, x∗, π∗,U(Π))) ≤ negl(n),

where π∗ = Priv(sk, x∗) and U(Π) ∈ Π is sampled uniformly
at random.

We also need an extension of this notion. The definition
of extended HPS is the same as that of ordinary HPS, except
that the proof system HPS accepts an extra input from a fi-
nite set E. In this setting, the algorithm Pub takes as input
pk ∈ PKn, x ∈ L, e ∈ E, and a witness w of the fact that
x ∈ L, and the algorithm Priv takes as input sk ∈ SKn,
x ∈ X, and e ∈ E. We shall also require that elements of E
are uniquely encoded as bit strings of length bounded by a
polynomial in n, and that HPS provides an algorithm that ef-
ficiently determines whether a bit string is a valid encoding
of an element of E.

We can modify in the obvious way to define extended
1(2)-universal HPS.

Next, we define a new property for HPS that is useful
in our construction.

Definition 2: We say that a hash proof system HPS =
(Param,KGen, Pub, Priv) for a language L is a 1-universal
(λ, ε)-key-leakage extractor if for any function f : {0, 1}∗ →
{0, 1}λ we have

∆((pk, x, f (sk), Priv(sk, x)), (pk, x, f (sk),U(Π))) ≤ ε,

where x ∈R X \ L. If ε = negl(n) we say that HPS is a
1-universal λ-key-leakage extractor for L.

Note that, we can obtain a 1-universal λ-key-leakage extrac-
tor HPS by combining any 1-universal HPS with any strong
extractor (see Sect. 4.1).

Subset membership problem. Roughly, we require that L
and X \L are computationally indistinguishable. The formal
definition is as follows.

Definition 3: A subset membership problem is called hard
if for any probabilistic polynomial-time adversaryA it holds
that

AdvSM
HPS,A(n)

de f
=

∣∣∣Prx0←L[A(X, L, x0) = 1] − Prx1←X\L[A(X, L, x1) = 1]
∣∣∣.

is negligible in n.

3. Models

3.1 Leakage-Resilient CCA2 Stateless PKE

In this section we review the notion of a-posteriori chosen-
ciphertext key-leakage attack, introduced by Naor and
Segev [12].

Let Π = (KGen, Enc,Dec) be a PKE scheme. The
leakage oracle, denoted by Leak(sk), takes as input a func-
tion f and outputs f (sk). We say that A is a λ-key-leakage
adversary if the sum of output lengths of all the functions
thatA submits to the leakage oracle is at most λ.

In this game, the adversary is allowed to adaptively
access a decryption oracle Dec(sk, ·) that receives as input
a ciphertext CT and outputs Dec(sk,CT ). We denote by
Dec"C(sk, ·) a decryption oracle that decrypts any ciphertext
other than C.

Definition 4 (LR-CCA2 security [12]): A public-key en-
cryption scheme Π = (KGen, Enc,Dec) is semantically
secure against a-posteriori chosen-ciphertext λ-key-leakage
attack if for any probabilistic polynomial-time λ-key-
leakage adversaryA = (A1,A2) it holds that

AdvKL,CCA2
Π,A (n)

de f
=

1
2

∣∣∣∣Pr
[
ExptKL,CCA2

Π,A (0) = 1
]
− Pr
[
ExptKL,CCA2

Π,A (1) = 1
]∣∣∣∣

is negligible in n, where ExptKL,CCA2
Π,A (b) is defined as fol-

lows

1. (pk, sk)← KGen(1n).
2. (M0,M1, st) ← ALeak(sk),Dec(sk,·)

1 (pk) such that |M0| =
|M1|.

3. C ← Encpk(Mb).
4. b′ ← ADec"C (sk,·)

2 (C, st).
5. Output b′.

3.2 Leakage-Resilient CCA2 Stateful PKE

In this section we review the definition of StPE and its se-
curity as given in [2], then present the notion of LR-CCA2
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attack in the case of StPE.

Definition 5 (StPE [2]): A StPE scheme consists of the fol-
lowing algorithms:

• StPE.Setup(1n)→ sp: Taking 1n for a security param-
eter n ∈ Z≥0 as input, this algorithm generates a system
parameter sp which includes n.
• StPE.KGen(sp) → (sk, pk): Taking sp as input, this

algorithm generates a secret/public key pair (sk, pk).
• StPE.PKCk(sp, pk) → δ: Taking sp and pk as input,

this algorithm returns 1 if the public key pk is valid or
returns 0 otherwise (i.e., δ ∈ {0, 1}).
• StPE.NwSt(sp) → st: Taking sp as input, this algo-

rithm generates a new state.
• StPE.Enc(sp, pk, st,M) → (C, st): Taking sp, pk, st

and a plaintext M as input, this algorithm outputs a ci-
phertext C and state st which may be different from the
state provided as input to this algorithm.
• StPE.Dec(sp, sk,C) → (M): Taking sp, sk, and C as

input, this deterministic algorithm outputs M which is
either a plaintext or ⊥ (meaning reject) message.

We impose a consistency condition on StPE: For any
sp output by StPE.Setup, (sk, pk) generated by StPE.KG
and st output by either StPE.NwSt or StPE.Enc, if (C, st)
is an output of StPE.Enc(sp, pk, st,M), then StPE.Dec
(sp, sk,C) = M.

We now define the notion of LR-CCA2 attack in the
case of StPE, which naturally extends that of CCA2 security
for StPE of [2] by giving an adversary the leakage oracle
and only allowing him to query this oracle before challenge
query.

Note that in the framework of this type of StPE, we can
consider the secret key of the receiver and the state issued
by the sender as possibly leaking information. Therefore, it
seems natural to discuss also the security with state-leakage,
in addition to the secret key. However, in this paper, we only
focus on the security with (secret) key-leakage.

Definition 6 (LR-CCA2 security of StPE): Let StPE be a
StPE scheme. Consider a game played with an attackerA:

Phase 1: The game computes sp ← StPE.Setup(1n),
(pk1, sk1) ← StPE.KGen(sp) and st ← StPE.NwSt
(sp). Note that (sk1, pk1) is the secret/public key pair
of the honest receiver R1. The game sends (sp, pk1) to
A.

Phase 2: A outputs public keys pk2, . . . , pkt of receivers
R2, . . . ,Rt respectively, all of which are in the range of
the second element of StPE.KGen(sp). Note that A
may or may not know the secret keys corresponding to
the public keys pk2, . . . , pkt.

Phase 3: A issues a number of (but polynomially many)
queries, each of which is responded by the game. The
type of each query and the action taken by the game are
described as follows:

– Leakage queries, each of which is denoted by f j:
The game computes f j(sk1) and sends this result

to A. Note that, the sum of output lengths of all
leakage functions is at most λ, and these queries
are requested before the challenge query.

– A challenge query (m0,m1) such that |m0| = |m1|:
The game picks b

$←− {0, 1}, computes (C∗, st) ←
StPE.Enc(sp, pk1, st,mb), where st denotes the
current state, and sends C∗ toA.

– Encryption queries, each of which is denoted by
(i,M) where i ∈ {1, ..., t}: The game computes
(C, st) ← StPE.Enc(sp, pki, st,M), where st de-
notes the current state, and sends C toA.

– Decryption queries, each of which is denoted by
C " C∗: The game computes StPE.Dec(sp, sk1,
C) and sends the resulting decryption message or
⊥ (Reject) toA.

Phase 4: A outputs its guess b′ ∈ {0, 1}.
We defineA’s advantage by

AdvKL,CCA2
StPE,A (n) def

=
∣∣∣∣Pr[b′ = b] − 1

2

∣∣∣∣.

The above StPE is semantically secure against a-posteriori
chosen-ciphertext λ-key-leakage attack if for any probabilis-
tic polynomial-time λ-key-leakage adversary A, the advan-
tage ofA is negligible in n.

The LR-CCA2 security of StPE defined above can be con-
sidered in the KSK (Known Secret Key) or the USK (Un-
known Secret Key) models [4]. In the KSK model, we as-
sume that the attackerA possesses the corresponding secret
keys sk2, . . . , skt of the public keys output in Phase 2 of the
attack game.

3.3 Symmetric Encryption

First, we review the formal definition of symmetric encryp-
tion as follows.

Definition 7 (SYM [2]): Let KD be the key space. A sym-
metric encryption scheme, denoted by SYM, consists of the
following algorithms:

• SYM.Enc(K,M) → e: Taking a key K ∈ KD and a
plaintext M as input, this algorithm encrypts M into a
ciphertext e.
• SYM.Dec(K, e) → M: Taking K ∈ KD and e as input,

this algorithm decrypts e into M.

To construct LR-CCA2-secure StPE schemes, we need a
SYM scheme secure against CCA attack in which the at-
tacker does issue encryption queries. Now, a formal defini-
tion follows.

Definition 8 (IND-CCA of SYM [2]): Let SYM be a sym-
metric encryption scheme as defined in Definition 7. Con-
sider a game played with an attackerA:

Phase 1: The game chooses K
$←− KD.

Phase 2: A issues encryption queries, each of which is de-
noted by M. On receiving this, the game computes
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e
$←− Enc(K,M) and gives e to A. A also issues de-

cryption queries, each of which is denoted by e. On
receiving this, the game computes M ← Dec(K, e) and
gives M toA.

Phase 3: A issues a challenge query (a pair of plaintexts)
(m0,m1) such that |m0| = |m1|. On receiving this, the

game picks b
$←− {0, 1}, computes e∗

$←− SYM.Enc(K,
mb) and gives e∗ toA.

Phase 4: A continues to issue encryption and decryption
queries as in Phase 2. However, a restriction here is
that A is not allowed to issue e∗ as decryption query.
The game responds to A’s queries in the same way as
it did in Phase 2.

Phase 5: A outputs its guess b′ ∈ {0, 1}.
We defineA’s advantage by

AdvIND-CCA
SYM,A (n)

def
=
∣∣∣∣Pr[b′ = b] − 1

2

∣∣∣∣.

We remark that as mentioned in [4], the SYM schemes
meeting the IND-CCA definition can in fact be easily con-
structed, eg. using the encrypt-then-mac composition [5]
with an AES mode of operation (such as CBC) and a MAC
(such as CBC-MAC or HMAC [3]).

4. Generic Constructions from Hash Proof Systems

In this section, we give a generic construction of a 1-
universal λ-key-leakage extractor that will be used in our
constructions. We then present generic constructions of both
stateless and stateful PKE scheme that are resilient to LR-
CCA2 attack. In the case of stateless PKE, we apply the
generic construction of Cramer-Shoup [6] to generalize the
work of Naor-Segev. The stateful scheme is an extension
from the above stateless scheme.

4.1 The Construction of a 1-Universal λ-Key-Leakage Ex-
tractor HPS

Assume that L is a membership indistinguishable lan-
guage, HPS = (Param,KGen, Pub, Priv) be a 1-universal
HPS for L. Let Ext: Π × {0, 1}t → {0, 1}m be an
average-case (log |Π| − λ, ε)-strong extractor. The follow-
ing describes the 1-universal λ-key-leakage extractor HPS
HPSext = (Paramext,KGenext, Pubext, Privext) for language
L′ = {(x, s)|x ∈ L, s ∈ {0, 1}t} (it is easy to see that if L is a
membership indistinguishable language, then so is L′):

Paramext: the same as the algorithm Param of HPS.
KGenext: On input sp generated by Paramext, choose

(pk, sk)← KGen(sp), and return (pk, sk).
Pubext: On input a public key pk, a pair of variables

((x, s), w) with (x, w)
$←− RL, and s

$←− {0, 1}t, compute
π = Pub(pk, x, w), π′ = Ext(π, s). Output π′.

Privext: On input a secret key sk, and (x, s), compute π =
Priv(sk, x), π′ = Ext(π, s). Output π′.

The correctness of the scheme follows from the property that

Priv(sk, x) = Pub(pk, x, w) for any valid ciphertext x ∈ L
with witness w. Thus, the output of Privext is always the key
encapsulated by Pubext.

The following theorem shows that the above HPS is a
1-universal λ-key-leakage extractor. The main idea of the
proof was implicit in [12] (see the proof of Theorem 4.1 of
[12] for details).

Theorem 1: Assuming that HPS is a 1-universal HPS for
the language L, and Ext is an average-case (log |Π|−λ(n), ε)-
strong extractor, the hash proof system HPSext is a 1-
universal λ(n)-key-leakage extractor for the language L′ for
any λ(n) ≤ log |Π| − ω(log n) − m, where n is the security
parameter and m is the proof size of HPSext.

Proof. Let f : {0, 1}∗ → {0, 1}λ(n) be the function that the
adversary used to learn λ(n) bits from the secret key.

From the property that Priv(sk, x) = Pub(pk, x, w)
for any valid ciphertext x ∈ L with witness w. We have
Privext(sk, x, s) = Ext(π, s) = Pubext(pk, x, w, s). Thus,
HPSext is an HPS for language L′ = {(x, s)|x ∈ L, s ∈
{0, 1}t}. To complete the proof, next we show that for any
fixed (x, s) ∈ X′ \ L′ (where X′ = {(x, s)|x ∈ X, s ∈ {0, 1}t}),
it holds that

∆((Privext((x, s), sk), s, pk, f (sk)),

(U(Π′), s, pk, f (sk)))≤ ε.

The adversary learns at most λ(n)(= log( f (sk))) bits of leak-
age, therefore from Lemma 1 we have

H̃∞(π | pk, f (sk))≥H∞(π | pk) − log( f (sk))

=log |Π| − λ(n).

This is derived from the 1-universality of HPS, that is,

H̃∞(π | pk) = Pr[Priv(sk, x) = π] =
1
|Π| .

Now, from the assumption that Ext is an average-case
(log |Π| − λ(n), ε)-strong extractor and the definition of the
strong extractor (Definition 1), it holds that

∆((Ext(π, s), s, pk, f (sk)), (U(Π′), s, pk, f (sk))) ≤ ε.

By replacing Ext(π, s) with Privext((x, s), sk), we have

∆((Privext((x, s), sk), s, pk, f (sk)),

(U(Π′), s, pk, f (sk)))≤ ε.

Therefore, HPSext satisfies the condition of a 1-universal
λ(n)-key-leakage extractor.

Now, from the fact that strong extractor can extract
at most m ≤ log |Π| − λ(n) − ω(log n) nearly random bits,
we find out the bound of λ(n) as follow: λ(n) ≤ log |Π| −
ω(log n) − m. !

4.2 The Construction of Stateless PKE

Assume that L is a membership indistinguishable language,
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HPS1 = (Param1,KGen1, Pub1, Priv1) be a 1-universal λ-
key-leakage extractor HPS for a language L, and HPS2 =
(Param2,KGen2, Pub2, Priv2) be an extended 2-universal
HPS for the same language L. We define an encryption
scheme Π = (KGen, Enc,Dec) as follows:

Key Generation: On input 1n for n ∈ Z≥0, generate
system parameter sp = (sp1, sp2), where sp1 ←
Param1(1n), sp2 ← Param2(1n). Choose (pk1, sk1) ←
KGen1(sp1), (pk2, sk2) ← KGen2(sp2), and return
pk = (pk1, pk2), sk = (sk1, sk2).

Encryption: Given 1n for n ∈ Z≥0, a public key pk =
(pk1, pk2), along with a message M ∈ Π1 (where Π1
is the domain of Pub1; it may be, for example, {0, 1}m),
do as follows.
E0: Choose a pair (x, w)

$←− RL.
E1: π1 = Pub1(pk1, x, w).
E2: e = M ⊕ π1.
E3: π2 = Pub2(pk2, x, w, e).
E4: Output c = (x, e, π2).

Decryption: Given 1n for n ∈ Z≥0, a secret key sk =
(sk1, sk2), along with a ciphertext c, do the following.

D0: Parse c as a 3-tuple (x, e, π2); output ⊥ if c is not
of this form.

D1: Compute π′2 = Priv2(sk2, x, e).
D2: Test if π′2 = π2; output ⊥ and halt if this is not the

case.
D3: Compute π1 = Priv1(sk1, x).
D4: Output M = e ⊕ π1.

Next, we show that this PKE scheme is LR-CCA2-secure.

Theorem 2: Assume that L is a membership indistinguish-
able language, HPS1 is a 1-universal λ-key-leakage extrac-
tor for L, and HPS2 is an extended 2-universal HPS for L,
with proofs π2 of size |π2| = p ≥ λ + ω(log n). Then the
encryption scheme constructed from HPS1,HPS2 is seman-
tically secure against a-posteriori chosen-ciphertext λ-key-
leakage attacks, where n denotes the security parameter.

Proof. Before starting to prove, we state the following
lemma, which explicitly appeared in [7].

Lemma 2 (Lemma 4 of [7]): Let X1, X2 and F be events
defined on some probability space. Suppose that the event
X1 ∧ ¬F occurs if and only if X2 ∧ ¬F occurs. Then
| Pr[X1] − Pr[X2] |≤ Pr[F].

Let f : {0, 1}∗ → {0, 1}λ be the function that the adversary
used to learn λ bits from the secret key.

LetA be an adversary on the LR-CCA2 security of the
scheme. We will consider a sequence of games, Game G0,
Game G1,..., each game involving A. Let Ti be the event
that in Game Gi, it holds that b = b′, i.e., that the adversary
succeeds.

Game G0: This is the original LR-CCA2 security game.
The adversaryA has access to a decryption oracle Dec(sk, ·)
and can query leakage functions, gets a target ciphertext
c∗ = (x∗, e∗, π∗2) of message Mb, where c∗ (= Enc(pk,Mb))

is computed as follows:

1. (x∗, w∗)
$←− RL.

2. π∗1 = Pub1(pk1, x∗, w∗).
3. e∗ = Mb ⊕ π∗1.
4. π∗2 = Pub2(pk2, x∗, w∗, e∗).

It is clear that

AdvKL,CCA2
Π,A (n) = |Pr[T0] − 1/2|. (1)

Game G1: We now modify game G0 to obtain a new game
G1. These two games are identical, except for a small mod-
ification to the encryption oracle. Instead of using the en-
cryption algorithm as given to compute the target ciphertext
c∗, we use a modified encryption algorithm, in which steps
E1 and E3 are replaced by:
E1′: π∗1 = Priv1(sk1, x∗).
E3′: π∗2 = Priv2(sk2, x∗, e).

The change we have made is purely conceptual: the
values of π∗1 and π∗2 are exactly the same in game G1 as they
were in G0. Therefore,

Pr[T1] = Pr[T0]. (2)

Note that the encryption oracle now makes use of some com-
ponents of the secret key, which is something the original
encryption oracle does not do.

Game G2: We now modify game G1 to obtain a new game
G2. We modify the challenge ciphertext, replacing step E0

of the encryption algorithm by E0′: x∗
$←− X \ L.

By the membership indistinguishability property of the
language L, Games G1 and G2 are indistinguishable. In-
deed, we show that the existence of an adversary that is able
to distinguish the above Games with non-negligible advan-
tage implies the existence of an efficient distinguishing al-
gorithm that contradicts the hardness assumption for L.

We define the following game between a simulator and
an adversary that plays one of the above Games (G1 or G2).
The simulator takes as input 1n, for n > 0, along with
HPS1,HPS2, and x∗ ∈ X.

The simulator provides a “simulated environment” for
the adversary the same as Game G1 using HPS1,HPS2.

In the challenge phase, the attacker presents messages
M0 and M1 of his choice to the simulator. The simulator
flips a random coin σ, and computes the target ciphertext
c∗ = (x∗, e∗, π∗2) of message Mσ where x∗ is the value input
to the simulator. Note that, in Game G1 the values π∗1, π

∗
2

are computed by using Priv1, Priv2, and sk1, sk2, so they are
correctly computed whether or not x is in L.

Finally, the adversary outputs a bit β to show the Game
(Gβ) which he has played with. The simulator outputs 1
if β = 1 (mean that he has played with Game G1), and 0
otherwise, after which, the simulator halts.

It is easy to see that the simulation is perfect. There-
fore, we have

| Pr[T2] − Pr[T1] |≤ negl(n). (3)
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Game G3: In this game, we modify the decryption ora-
cle in game G2 to obtain a new game G3. Instead of using
the original decryption algorithm, we modify the decryption
algorithm, replacing step D2 with:

D2′: Test if x ∈ L; output ⊥ and halt if this is not the case.
If x ∈ L, the oracle runs as previously.

Now, let R3 be the event that in game G3, some ciphertext C
is submitted to the decryption oracle that is rejected in step
D2′ but that would have passed the test in step D2.

Note that if a ciphertext passes the test in D2′, it would
also have passed the test in D2.

It is clear that games G2 and G3 proceed identically
until the event R3 occurs. In particular, the event T2 ∧ ¬R3
and T3 ∧ ¬R3 are identical. So by Lemma 2, we have

| Pr[T3] − Pr[T2] |≤ Pr[R3],

and therefore it suffices to bound Pr[R3].

Claim 1: If HPS2 is an extended 2-universal HPS for L,
with proofs π2 of size |π2| = p ≥ λ+ω(log n), then the event
R3 occurs with only a negligible probability.

Proof of Claim 1. Denote by c1 = (x1, e1, π21) the first
invalid ciphertext submitted by the adversary. Denote by
view the view of the adversary prior to submitting the in-
valid ciphertext. Then, view = {pk, x1, e1, f (sk), x∗, e∗, π∗2 =
Priv2(sk2, x∗, e∗)}. The adversary learns at most λ bits of
leakage, and therefore (see Lemma 1)

H̃∞(π21 | view)≥H∞(π21 | view \ { f (sk)}) − log( f (sk))

=H∞(π21 | view \ { f (sk)}) − λ
=p − λ

This is derived from the 2-universality of HPS2, that is

Pr[Priv2(sk2, x1, e1) = π21 | Priv2(sk2, x∗, e∗) = π∗2]

=
1
|π2|
=

1
p
.

In particular, the definition of average min-entropy implies
that prior to submitting the invalid ciphertext the probability
of A in guessing π21 is at most 2−H̃∞(π21 |view) ≤ 2λ−p. Thus,
the probability that the decryption algorithm accepts the first
invalid ciphertext is at most 2λ−p = 2λ/2p.

An almost identical argument holds for all the subse-
quent invalid decryption queries. The only difference is that
each time the decryption oracle rejects an invalid ciphertext
the adversary can rule out one more value of π2. This shows
that the decryption algorithm accepts the i-th invalid cipher-
text with probability at most 2λ/(2p − i + 1).

Assume that A made at most q decryption queries,
where q = q(n) is polynomial in n.

We have

Pr[R3] ≤ 2λ

2p + . . . +
2λ

2p − q + 1
≤ q · 2λ

2p − q + 1
.

From the assumption that p ≥ λ + ω(log n), we have

Pr[R3]≤q · 2p−ω(log n)

2p − q + 1
=

q · 2−ω(log n)

1 − q−1
2p

<
qε

1 − 1/2
= 2qε.

The claim follows. !
Therefore, we have

| Pr[T3] − Pr[T2] |≤ Pr[R3] ≤ negl(n). (4)

Game G4: This game is identical to game G3, except for a
small modification to the encryption oracle. In the challenge

phase, replacing step E1′ by E1′′: π∗1
$←− Π1

It is clear by construction that

Pr[T4] = 1/2, (5)

since in game G4, the variable b is never used at all, and so
the adversary’s output is independent of b.

Claim 2:

| Pr[T4] − Pr[T3] |≤ negl(n). (6)

Proof of Claim 2. Now, let us condition on fixed val-
ues of sk2, b, and the adversary’s coins. In this conditional
probability space, since the simulator rejects all ciphertexts
(x, e, π2) with x ! L, it follows that the output of the simu-
lator in game G3 is completely determined as a function of
pk1, x∗, f (sk1), and Priv1(sk1, x∗), while the output in game
G4 is determined as the same function of pk1, x∗, f (sk1), and
π∗1 ∈R Π1. Moreover, by independence, the joint distribu-
tion of (pk1, x∗, f (sk1), π∗1) does not change in passing from
the original probability space to the conditional probability
space. It now follows directly from the assumption HPS1 is
a 1-universal λ-key-leakage extractor for L that

∆((pk1, x∗, f (sk1), Priv1(x∗, sk1)),
(pk1, x∗, f (sk1),U(Π1))) ≤ negl(n).

The claim follows. !
The theorem now follows immediately from (1)–(6). !

Remark 1. Although our construction is a generalization
of the Naor-Segev’s scheme, it is not straightforward exten-
sion. The main technical difference is that to bound Pr[R3]
(Claim 1) we analyze the probability of the adversary in
guessing π2i = Priv2(sk2, xi, ei), where xi ← X \ L, (it is
the reason why we need the condition on the length of π2),
and hence our analysis holds in the general case. Whereas,
Naor and Segev analyze the probability of the adversary in
guessing some component parts of the secret key (see Claim
6.12 of [12] for more details) and hence they analyze a very
specific case.

4.3 The Construction of StPE

Assume that L,HPS1,HPS2 are components as in Sect. 4.2,
and SYM be a SYM scheme. We assume that the HPS
scheme HPS1 and the SYM scheme SYM are “compatible”
meaning that the key space KK of HPS1 is the same as the
key space KD of SYM. We define a StPE scheme StPE as
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follows:

StPE.Setup: On input 1n for n ∈ Z≥0, return (sys-
tem parameter) sp = (sp1, sp2), where sp1 ←
Param1(1n), sp2 ← Param2(1n).

StPE.KGen: On input sp, choose (pk1, sk1) ← KGen1
(sp1) and (pk2, sk2) ← KGen2(sp2). Then return
PK = (pk1, pk2), S K = (sk1, sk2).

StPE.PKCk: On input sp and PK = (pk1, pk2), output 1.
StPE.NwSt: On input sp, execute the instance sampling al-

gorithm of L by E0:(x, w)
$←− RL, and return st = (x, w).

StPE.Enc: On input sp, a public key PK = (pk1, pk2), a
state st, along with a message M, do the following.
If st is of the form (x, w) then compute E1: π1 =
Pub1(pk1, x, w); else, parse st as (x, w, PK, π1). Next,
do as follows.

E2: e = SYM.Enc(π1,M).
E3: π2 = Pub2(pk2, x, w, e).
E4: Output c = (x, e, π2) and the new state st =

(x, w, PK, π1).

StPE.Dec: On input sp, a secret key S K = (sk1, sk2), along
with a ciphertext c, do the following.

D0: Parse c as a 3-tuple (x, e, π2); output ⊥ if c is not
of this form.

D1: Compute π′2 = Priv2(sk2, x, e).
D2: Test if π′2 = π2; output ⊥ and halt if this is not the

case.
D3: Compute π1 = Priv1(sk1, x).
D4: Output M = SYM.Dec(π1, e).

Note that, StPE.PKCk returns 1 (and does nothing else)
as the KSK model implies that any public keys in this
system are generated correctly following the algorithm
StPE.KGen. (Namely the entity that has generated a public
key must know the corresponding secret key.)

In our construction of StPE, there are two types of state:
1) (x, w) which is output by StPE.NwSt; 2)(x, w, PK, π1)
which is produced by the algorithm StPE.Enc. Note also
that for state st = (x, w) generated by the algorithm StPE.
NwSt, [StPE.Enc(PK, st,M)]C = [StPE.Enc(PK, st′,M)]C

for any st′ output by StPE.Enc before StPE.NwSt is in-
voked to generate new state (different from st). Here
“[StPE.Enc(· · · )]C” denotes the ciphertext part of an output
of StPE.Enc.

We remark that the algorithm StPE.Enc becomes
highly efficient when a sender sends encryptions to a single
receiver: If the sender wants to send encryptions of M1, ...,
Mn to the same receiver whose public key is PK, he does
not have to run Pub1 for each plaintext Mi for i = 1, . . . , n
but just runs them once at the beginning and then only does
steps E2, E3, E4 (in StPE.Enc).

Next, we show that in the KSK model, the above
scheme is LR-CCA2-secure.

Theorem 3: Assume that L is a membership indistinguish-
able language, HPS1 is a 1-universal λ-key-leakage extrac-
tor for L, HPS2 is an extended 2-universal HPS for L, with

proofs π2 of size |π2| = p ≥ λ + ω(log n), and the underly-
ing symmetric encryption SYM is IND-CCA-secure. Then
in the KSK model, the proposed generic StPE scheme StPE
is semantically secure against a-posteriori chosen-ciphertext
λ-key-leakage attacks. More precisely, we have

AdvKL,CCA2
StPE,A (n) ≤ AdvIND-CCA

SYM,B (n),

where n denotes the security parameter.

Proof. Let f : {0, 1}∗ → {0, 1}λ be the function that the
adversary used to learn λ bits from the secret key.

LetA be an adversary on the LR-CCA2 security of the
scheme. We will consider a sequence of games, Game G0,
Game G1,..., each game involving A. Let Ti be the event
that in Game Gi, it holds that b = b′, i.e., that the adversary
succeeds.

Game G0: This is the original LR-CCA2 security game. We
repeat this game to clean up the notations. Let sp be a sys-
tem parameter. Let PK1 and S K1 be public and secret keys
of the honest receiver respectively. Let PK2, . . . , PKt be the

public keys output byA. Let st = (x∗, w∗), where (x∗, w∗)
$←−

RL, be the sender’s state generated by StPE.NwSt, fixed
throughout each game. We denote a challenge ciphertext
by c∗ = (x∗, e∗, π∗2). Where c∗ (= StPE.Enc(pk, st,Mb)) is
computed as follows:

1. π∗1 = Pub1(pk1, x∗, w∗).
2. e∗ = SYM.Enc(π1,Mb).
3. π∗2 = Pub2(pk2, x∗, w∗, e∗).

Now, observe that we can assume that A does not make
encryption queries of the form (i,M) for i = 2, . . . , t. The
reason is that since A is assumed to know S Ki correspond-
ing to its public key PKi following the KSK model, it,
given (x∗, PK1), can also compute ci = (x∗, ei, π2i ) (for all
i = 2, . . . , t) as follows:

1. π1i = Priv1(ski1, x∗).
2. ei = SYM.Enc(π1i ,Mb).
3. π2i = Priv2(ski2, x∗, ei).

Since G0 is the original LR-CCA2 game of StPE, we have

AdvKL,CCA2
StPE,A (n) = |Pr[T0] − 1/2|. (7)

Game G1: We now modify game G0 to obtain a new game
G1. These two games are identical, except for a small mod-
ification to the encryption oracle. Instead of using the en-
cryption algorithm as given to compute the target ciphertext
c∗, we use a modified encryption algorithm, in which steps
E1 and E3 are replaced by:

E1′: π∗1 = Priv1(sk1, x).
E3′: π∗2 = Priv2(sk2, x, e).

The change we have made is purely conceptual: the values
of π∗1 and π∗2 are exactly the same in game G1 as they were
in G0. Therefore,

Pr[T1] = Pr[T0]. (8)
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Note that the encryption oracle now makes use of some com-
ponents of the secret key, which is something the original
encryption oracle does not do.

Game G2: We now modify game G1 to obtain a new game
G2. We modify the encryption oracle, replacing step E0 by

E0′: x∗
$←− X \ L.

The same as proof of Theorem 2, by the membership
indistinguishability property of the language L, Games G1
and G2 are indistinguishable. Therefore,

| Pr[T2] − Pr[T1] |≤ negl(n). (9)

Game G3: In this game, we modify the decryption oracle
in game G2 to obtain a new game G3. Instead of using the
original decryption algorithm, we modify the decryption al-
gorithm, replacing step D2 with:

D2′: Test if x ∈ L; output ⊥ and halt if this is not the case.
If x ∈ L, the oracle runs as previously.

Similar to the case of stateless PKE (Theorem 2), we proved
that in this game G3, it holds that

| Pr[T3] − Pr[T2] |≤ negl(n). (10)

Game G4: This game is identical to game G3, except for a
small modification to the encryption oracle. We again mod-
ify the algorithm used by the encryption oracle, replacing

step E1′ by E1′′: π∗1
$←− Π1.

Claim 3:

| Pr[T4] − Pr[T3] |≤ negl(n). (11)

Proof of Claim 3. Now, let us condition on fixed values of
sk2, b, the simulator’s coins (i.e., the coins which are used in
the algorithm SYM.Enc) and the adversary’s coins. In this
conditional probability space, since the actions of Pub1 and
Priv1 on L are determined by pk1, and since the simulator
rejects all ciphertexts (x, e, π2) with x ! L, it follows that the
output of the simulator in game G3 is completely determined
as a function of pk1, x∗, f (sk1), and Priv1(sk1, x∗), while the
output in game G4 is determined as the same function of
pk1, x∗, f (sk1), and π∗1 ∈R Π1. Moreover, by independence,
the joint distribution of (pk1, x∗, f (sk1), π∗1) does not change
in passing from the original probability space to the condi-
tional probability space. It now follows directly from the
assumption HPS1 is a 1-universal λ-key-leakage extractor
for L that

∆((pk1, x∗, f (sk1), Priv1(x∗, sk1)),
(pk1, x∗, f (sk1),U(Π1))) ≤ negl(n).

The claim follows. !

Claim 4:

| Pr[T4] − 1
2
|≤ AdvIND−CCA

SYM,B (n). (12)

Where B denote the attacker against the underlying symmet-
ric encryption SYM .

Proof of Claim 4. To prove Claim 4 we construct an oracle
machine B that breaks IND-CCA security of SYM using the
attackerA as a subroutine.

Algorithm B(n):

Generate sp, S K1, and PK1, then give (sp, PK1) to A,

choose randomly x∗
$←− X \ L.

IfA issues a challenge query (M0,M1) such that |M0| =
|M1|, then

Query (M0,M1) to the challenger to get e∗
$←−

SYM.Enc(K∗0 ,Mb) where b
$←− {0, 1}; compute

π∗2 = Priv2(sk2, x∗, e∗); and give c∗ = (x∗, e∗, π∗2)
toA.

IfA issues an encryption query (1,M), then

Query M to the challenger to get e
$←−

SYM.Enc(K∗0 ,M), compute π2 = Priv2(sk2, x∗, e),
and give c = (x∗, e, π2) toA.

If A issues a decryption query c " c∗, where c =
(x, e, π2), then

If π2 " π∗2 then

π1 ← Priv1(sk1, x∗);
If π1 " ⊥, then give M = SYM.Dec(π1, e) to
A; else return ⊥.

Else

Query e (which must be different from e∗) to
the challenger to get M ← SYM.Enc(K∗0 , e),
and give M toA.

IfA outputs b′, then return b′.

Observe that in the above algorithm B,A is essentially con-
ducting chosen ciphertext attack on the SYM scheme SYM.
Thus we have

| Pr[T4] − 1
2
|≤ AdvIND-CCA

SYM,B (n).

The claim follows. !
The theorem now follows immediately from (7)–(12). !

Remark 2. In this work, we only focus on the security with
key-leakage, other than state-leakage (Definition 6). Thus,
we can consider that the secret key π1 of SYM, which is
included in the state st, is not leaked. This as well as our
analysis in Claim 3 show the reason why leakage resilient
symmetric encryption is not needed in the above scheme.

Remark 3. It follows from Theorems 1 and 2 (3) that the
above constructions are LR-CCA2-secure with the leakage
rate at most min{|π1 |,|π2 |}

|sk1 |+|sk2 | of the secret-key length, where |a| de-
notes the size of a. An efficient instantiation of the proposed
construction of stateless PKE is the encryption scheme of
Naor-Segev [12], which is LR-CCA2-secure with the leak-
age rate of 1/6. Since the StPE scheme can also be con-
structed from the same HPSs, we obtained an efficient in-
stantiation of the proposed StPE with the same leakage rate.



NGUYEN et al.: LEAKAGE-RESILIENCE OF STATELESS/STATEFUL PUBLIC-KEY ENCRYPTION FROM HASH PROOFS
1109

5. Example: The Efficient LR-CCA2-Secure Scheme of
Naor-Segev

In this section, we first review the decisional Diffie-Hellman
assumption (DDH). Then we present and analyze the Naor-
Segev’s scheme in the framework of our general construc-
tion.

The DDH assumption. The DDH assumption is that the en-
sembles {(G, g1, g2, gr

1, g
r
2)} and {(G, g1, g2, g

r1
1 , g

r2
2 )} are in-

distinguishable, where G is a group of order q, and the ele-
ments g1, g2 ∈ G and r, r1, r2 ∈ Zq are chosen independently
and uniformly at random.

Notations. Let G be a group of prime order q, g0 and g1 be
randomly chosen elements of G. Define X = G × G, and L
be the subgroup of X generated by (g1, g2) ∈ X. A witness
for (x1, x2) ∈ L is w ∈ Zq such that (x1, x2) = (gw1 , g

w
2 ). Let

λ = λ(n) be the leakage parameter, let Ext: Π × {0, 1}t →
{0, 1}m be an average-case (log q−λ, ε)-strong extractor, and
let H be a family of universal one-way hash functions H :
G3 → Zq. Rompel [14] showed that universal one-way hash
functions can be constructed from one-way functions, and
in particular, such functions exist based on the hardness of
DDH.

The scheme. We now present the encryption scheme of
Naor-Segev with a secret key of size essentially 6 log q bits
(six group elements), and it was showed in [12] that the
scheme is secure for any leakage of length λ ≤ log q −
ω(log n) − m, where m is the length of the plaintext. Now,
we analyse the scheme in the framework of our general con-
struction. First, we present HPS1 the 1-universal λ-key-
leakage extractor for L, and HPS2 the extended 2-universal
HPS for L. Then we present the stateless public-key en-
cryption scheme constructed from HPS1, HPS2, which is
identical to the scheme of Naor-Segev (the stateful encryp-
tion scheme can also be constructed from the same HPSs,
so we do not present here). From Theorem 2, it is obviously
that the constructed scheme is semantically secure against
λ-key-leakage CCA2 attacks.

The following describes the 1-universal λ-key-leakage
extractor HPS1.

HPS1:

Param1: On input 1n for n ∈ Z≥0, choose g1, g2 ∈ G, and
H ∈ H uniformly at random. Then output sp1 =
(g1, g2,H).

KGen1: On input a system parameter sp1, choose z1, z2 ∈
Zq, uniformly at random. Compute h = gz1

1 g
z2
2 , and

output pk1 = h, sk1 = (z1, z2).

Pub1: On input a public key pk1, a group of variables
(u1, u2, r, s) with r ∈ Zq, u1 = gr

1, u2 = gr
2, and

s
$←− {0, 1}t, compute π1 = Pub1(pk1, u1, u2, r, s) =

Ext(hr, s); then output π1.

Priv1: On input a private key sk1, and (u1, u2, s), compute
π1 = Priv1(sk1, u1, u2, s) = Ext(uz1

1 uz2
2 , s), and output

π1.

The hash proof system underlying the above scheme is the
one described in [11]. This hash proof system is 1-universal
based on the DDH assumption, and as an immediate conse-
quence we obtain the following corollary of Theorem 1:

Corollary 1: Assuming the hardness of DDH, and Ext is
an average-case (log q − λ(n), ε)-strong extractor, the above
hash proof system is a 1-universal λ(n)-key-leakage extrac-
tor for the language L for any λ(n) ≤ log q − ω(log n) − m,
where n is the security parameter and m is the proof size of
HPS1.

Next, we describe the extended 2-universal HPS2.

HPS2:

Param2: On input 1n for n ∈ Z≥0, choose g1, g2 ∈ G, and
H ∈ H uniformly at random. Then output sp2 =
(g1, g2,H).

KGen2: On input a system parameter sp2, choose
x1, x2, y1, y2 ∈ Zq, uniformly at random. Let c =
gx1

1 g
x2
2 , d = gy1

1 g
y2
2 . Output pk2 = (c, d), sk2 =

(x1, x2, y1, y2).

Pub2: On input a public key pk1, a group of variables
(u1, u2, r, e) with r ∈ Zq, u1 = gr

1, u2 = gr
2, and e ∈ G,

compute π2 = Pub2(pk2, u1, u2, r, e) = crdrα, where
α = H(u1, u2, e). Output π2.

Priv2: On input a private key sk1, and (u1, u2, e), compute
Compute α = H(u1, u2, e) and π2 = Priv2(sk2, u1, u2, e)
= ux1+y1α

1 ux2+y2α
2 . Output π2.

Applying the construction in Theorem 3 of [7] with one
change that instead of the injective encoding function Γ we
use the universal one-way hash functions H, we can easily
prove that the above hash proof system is the extended 2-
universal.

The following describes the stateless PKE scheme:

Key Generation:
On input 1n for n ∈ Z≥0, choose x1, x2, y1, y2, z1, z2 ∈
Zq, g1, g2 ∈ G, and H ∈ H uniformly at random. Let
c = gx1

1 g
x2
2 , d = g

y1
1 g
y2
2 , h = g

z1
1 g

z2
2 , then pk1 = h, sk1 =

(z1, z2), and pk2 = (c, d), sk2 = (x1, x2, y1, y2). Finally,
output a public key pk = (g1, g2, c, d, h,H), and a secret
key sk = (x1, x2, y1, y2, z1, z2).

Encryption:
Given 1n for n ∈ Z≥0, a public key pk = (pk1, pk2),
along with a message M ∈ {0, 1}m, compute

E0: Choose r ∈ Zq and s ∈ {0, 1}t uniformly at ran-
dom, and compute u1 = gr

1, u2 = gr
2.

E1: π1 = Pub1(pk1, u1, u2, r, s) = Ext(hr, s);
E2: e = M ⊕ π1;
E3: π2 = Pub2(pk2, u1, u2, r, e) = crdrα, where α =

H(u1, u2, e);
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E4: Output c = (u1, u2, e, s, π2).

Decryption:
Given 1n for n ∈ Z≥0, a secret key sk = (sk1, sk2), along
with a ciphertext c, do the following.

D0: Parse c as (u1, u2, e, s, π2); output ⊥ if c is not of
this form.

D1: Compute α = H(u1, u2, e) and π′2 =

Priv2(sk2, u1, u2, e) = ux1+y1α
1 ux2+y2α

2 .
D2: Test if π′2 = π2; output ⊥ and halt if this is not the

case.
D3: Compute π1 = Priv1(sk1, u1, u2) = Ext(uz1

1 uz2
2 , s).

D4: Output M = e ⊕ π1.

Correctness. For any sequence of coin tosses of the
key generation and encryption algorithms it holds that
ux1+y1α

1 ux2+y2
2 α = crdrα = π2 and that uz1

1 uz2
2 = hr, and there-

fore the decryption algorithm is always correct.

Proof of security. The following theorem is obtained from
Theorem 2 and the fact that the above hash proof systems
HPS1 and HPS2 are 1-universal λ-key-leakage extractor and
extended 2-universal, respectively. The following theorem
is shown and proven in the paper [12].

Theorem 4 ([12]): Assuming the hardness of the DDH
problem, the above encryption scheme is semantically- se-
cure against a-posteriori chosen-ciphertext ()/6−ω(log n)−
m)key-leakage attacks, where n denotes the security param-
eter, ) = )(n) denotes the length of the secret key and
m = m(n) denotes the length of the plaintext.

6. Conclusion

We have introduced the generic constructions of both state-
less and stateful PKE and proved that they are LR-CCA2-
secure. In these constructions, we have used the combina-
tion of any 1-universal HPS that satisfies the condition of a
key-leakage extractor and any 2-universal HPS with some
condition on the length of proof. In the case of StPE, we
have also used IND-CCA-secure symmetric encryption.

We leave it as an open problem to identify other generic
cryptography primitives (other than HPS) that are sufficient
for constructing PKE schemes that are resilient to key-
leakage. It is also an interesting open problem of con-
structing a StPE scheme secure against both state-leakage
and key-leakage attacks. We might discuss the security
with state-leakage in a similar way as that with randomness-
leakage in our framework.
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