
590
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.2 FEBRUARY 2016

PAPER

Public-Key Encryption with Lazy Parties∗

Kenji YASUNAGA†a), Member

SUMMARY In a public-key encryption scheme, if a sender is not con-
cerned about the security of a message and is unwilling to generate costly
randomness, the security of the encrypted message can be compromised.
In this work, we characterize such lazy parties, who are regarded as honest
parties, but are unwilling to perform a costly task when they are not con-
cerned about the security. Specifically, we consider a rather simple setting
in which the costly task is to generate randomness used in algorithms, and
parties can choose either perfect randomness or a fixed string. We model
lazy parties as rational players who behave rationally to maximize their
utilities, and define a security game between the parties and an adversary.
Since a standard secure encryption scheme does not work in this setting,
we provide constructions of secure encryption schemes in various settings.
key words: public-key encryption, rational cryptography, lazy party

1. Introduction

As a motivating example, consider the following situation.
Alice is a teacher of a course “Introduction to Cryptogra-
phy.” She promised to inform the students of their grades by
using public-key encryption. Each student prepared his/her
public key, and sent it to Alice. Since there are many stu-
dents taking the course, it is very costly to encrypt the grades
of all the students. However, because she promised to use
public-key encryption, she decided to encrypt the grades. To
encrypt messages, she needs to generate randomness. Gen-
erating randomness is also a costly task. While the grades
are personal information for the students and thus they want
them to be securely transmitted, the grades are not personal
information for Alice. The security of the grades is not her
concern. She noticed that, even if she generated imperfect
randomness for encryption, no one may detect it. Conse-
quently, she used imperfect randomness for encryption.

The above situation resulted in an undesirable conse-
quence. This example demonstrates that, if a party in a
cryptographic protocol is not concerned about the security
and is unwilling to do a costly task, then the security of the
protocol may be compromised. The insecurity is caused by
the laziness of the party. However, the security should be
preserved even if such parties exist.

Manuscript received April 28, 2015.
Manuscript revised August 24, 2015.
†The author is with the Institute of Science and Engineering,

Kanazawa University, Kanazawa-shi, 920-1192 Japan.
∗An extended abstract appeared in the Proceedings of Security

and Cryptography for Networks — 8th International Conference,
SCN 2012, September, 2012.

a) E-mail: yasunaga@se.kanazawa-u.ac.jp
DOI: 10.1587/transfun.E99.A.590

1.1 This Work

We introduce the notion of lazy parties, who may compro-
mise the security of cryptographic protocols. They are char-
acterized such that (1) they are not concerned about the se-
curity of the protocol in a certain situation, and (2) they be-
have in an honest-looking way and are unwilling to do a
costly task. As the first step toward understanding the be-
havior of lazy parties, we consider the following rather sim-
ple setting in public-key encryption schemes. The sender
and the receiver have their own valuable messages. They
want to transmit a message securely if it is valuable to them.
However, since both the sender and the receiver are lazy,
the sender is not willing to do a costly task if a message is
not valuable to him, and the receiver vice versa. The costly
task we consider is to generate randomness used in algo-
rithms. For simplicity, we assume that players can choose
either good randomness or bad randomness. We assume that
the good randomness is a truly random string, and the bad
randomness is a fixed string. Our goal is to design public-
key encryption schemes in which valuable messages of the
sender or the receiver can be transmitted securely by the lazy
sender and receiver who may use bad randomness in algo-
rithms.

(1) Formalizing the Problem

The security of public-key encryption with lazy parties is
formalized as follows. First, a security game between a
sender, a receiver, and an adversary is defined. The game
is a variant of the usual chosen plaintext attack (CPA) game
of public-key encryption. In the game, we see the sender
and the receiver as rational players. The sender and the re-
ceiver have their utility functions, the values of which are
determined by the outcome of the game, and they play the
game to maximize their utilities. Roughly speaking, an en-
cryption scheme is secure for lazy parties if there is a pair
of prescribed strategies of the sender and the receiver for the
game, the game is conducted in a secure way if they follow
the prescribed pair of strategies, and the pair of strategies
is a good equilibrium solution. The solution concepts we
consider in this work are the Nash equilibrium and the strict
Nash equilibrium, which is stronger than the Nash equilib-
rium.

(2) Impossibility Results

We show that to achieve the security for lazy parties with

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers

YASUNAGA: PUBLIC-KEY ENCRYPTION WITH LAZY PARTIES
591

a Nash equilibrium solution in our setting, the sender must
generate a secret key, and the encryption phase requires at
least two rounds. Neither of them is satisfied in the usual
public-key encryption. Therefore, we need to consider en-
cryption schemes in which the sender generates a secret key
in the key generation phase, and the sender and the receiver
interact at least two times in encrypting a message.

(3) Constructions

The security for lazy parties varies according to what infor-
mation each player knows. We consider several situations
according to the information each player knows, and present
a secure encryption scheme for lazy parties in each situation.

The first situation is a basic one: the receiver does not
know whether a message to be encrypted is valuable to him
or not, and the sender knows the value of the message for
him. We propose a two-round encryption scheme that is se-
cure for lazy parties with a strict Nash equilibrium solution.
The idea is simple. First, the receiver generates a random
string, encrypts it by the public key of the sender, and sends
it to the sender. Next, the sender recovers the random string
from the ciphertext and uses it to encrypt a message by the
one-time pad. Since the receiver does not know whether a
message to be encrypted is valuable to him or not, the re-
ceiver will generate good randomness.

The next situation is one in which the receiver may
know whether a message to be encrypted is valuable to him
or not. This captures a real-life situation; If we use encryp-
tion, in many cases, it is realized not only by the sender
but also the receiver that what kind of message will be sent.
Under this situation, the above two-round scheme seems no
longer secure since the receiver would generate bad random-
ness if a message to be encrypted is not valuable to him.
We show that for any pair of strategies the above two-round
scheme cannot achieve the security with a Nash equilibrium
solution. Thus we propose a three-round encryption scheme
that is secure in this setting. The encryption phase is con-
ducted as follows. First, the sender and the receiver perform
a key-agreement protocol to share a random string between
them so that the shared string will be uniformly random if
at least one of them chooses good one in the key-agreement
protocol. Then, the sender uses the shared string as random-
ness in the encryption algorithm. Finally, after recovering a
message, the receiver encrypts the message by the sender’s
public key and makes it public. At first glance, the final step
of making the encrypted message public seems redundant,
but our scheme does not achieve the security without this
step. Our three-round scheme is secure for lazy parties with
a strict Nash equilibrium solution.

We generalize the above situation such that both the
sender and the receiver may know that a message to be en-
crypted is valuable to them. The difference from the previ-
ous situation is that the sender may be able to know the value
of the message for the receiver, and the receiver vice versa.
In this situation, we realized that the above three-round
scheme has two different pairs of strategies that achieve the
security with a strict Nash equilibrium. There is a situation

such that one pair yields a higher utility to the sender, and
the other pair yields a higher utility to the receiver. More-
over, if the sender follows a strategy that yields a higher util-
ity to him and the receiver also does so, they will conduct an
encryption protocol in an insecure way, which is worse for
both of them. Thus, we propose a simple way to avoid such
a consequence.

Finally, we consider constructing a non-interactive en-
cryption scheme that is secure for lazy parties. We avoid
the impossibility result of existing non-interactive schemes
by adding some reasonable assumption to lazy parties. The
assumption is that players do not want to reveal their secret
key to adversaries. Then we employ a signcryption scheme
for an encryption scheme. A signcryption scheme is a cryp-
tographic primitive that achieves both public-key encryp-
tion and signature simultaneously, and thus the sender also
has a secret key. Some signcryption schemes (e.g., Zheng’s
scheme [28]) have the key-exposure property, which means
that the sender’s secret key can be efficiently recovered from
a ciphertext and its random string. This property seems to
be undesirable in a standard setting. However, we show that
if a signcryption scheme with the key-exposure property is
employed as a public-key encryption scheme, it is secure for
lazy parties with a strict Nash equilibrium solution.

1.2 Related Work

Halpern and Pass [18] have introduced Bayesian machine
games in which players’ utilities can depend on the compu-
tational costs of their strategies. We could use the frame-
work of Halpern and Pass to define a security of public-key
encryption schemes for lazy parties since the utilities of lazy
parties depend on their computational cost. We did not use
their framework since their framework seems too general for
our purpose.

There have been many studies on rational cryptog-
raphy [11], [17], [22], in which rational players are con-
sidered in designing cryptographic protocols. Much study
has been devoted to rational secret sharing [1], [3], [13],
[19], [23], [24], [26], [27]. There are studies on other
cryptographic primitives such as fair two-party computation
[2], [15], leader election [14], byzantine agreement [16],
oblivious transfer [20], and commitment schemes [21]. Our
work also can be seen as a study of rational cryptography.
As far as we know, this is the first study of rational behavior
in public-key encryption schemes.

In cryptography, there are several characterizations of
parties who are neither honest nor malicious [4], [7], [8].
In particular, the deviations of honest-looking parties were
studied in [7], [8]. All types of honest-looking parties de-
fined in [7], [8] deviate from the protocol in a way that is
computationally indistinguishable from the view of external
or internal parties. This means that no efficient statistical test
can tell the difference between honest parties and honest-
looking parties. In this study, we look at honest-looking
parties who may deviate from the protocol by using a fixed
string instead of a truly random string. Since the difference

592
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.2 FEBRUARY 2016

between fixed strings and truly random strings can be told
by a simple statistical test, the deviations of lazy parties are
bolder than honest-looking parties in [7], [8]. Note that all
the characterization in [7], [8] appeared in the context of
general multiparty computation, not in public-key encryp-
tion.

A problem of public-key encryption with lazy parties
is that lazy parties might not use good randomness in al-
gorithms. There are many studies on the security of cryp-
tographic tasks when only weak randomness is available.
If there are only high min-entropy sources, not including
truly random one, many impossibility results are known
[6], [9], [10], [25]. Bellare et al. [5] introduced hedged
public-key encryption, which achieves the usual CPA se-
curity if good randomness is used, and achieves a weaker
security if bad randomness is used. In this work, we con-
sider only two types of randomness sources, truly random
ones and fixed ones. We achieve the security by a mecha-
nism such that lazy parties choose to use good randomness
for their purpose.

1.3 Future Work

Possible future work will extend the framework of this work
to more general settings. For example, in this work, lazy
players can choose either truly random (full entropy) strings
or fixed (zero entropy) strings as the randomness in algo-
rithms. Since it seems more realistic for players to be able
to choose random strings from general entropy sources, ex-
tending the framework to such a general setting and defining
a reasonable security on that setting are interesting for future
work.

Another possible future work is to explore crypto-
graphic protocols that may be compromised in the presence
of lazy parties. This work demonstrates that public-key en-
cryption is a primitive in which lazy participants can com-
promise the security of other participants. The same thing
might happen in other primitives. Although we consider
only generating good randomness as a costly task, it is pos-
sible to consider another thing as cost, such as time for com-
putation and delay in the protocol.

1.4 Organization

In Sect. 2, we introduce the CPA game for lazy parties, de-
fine utility functions of lazy parties, and provide a definition
of CPA security for lazy parties. Some impossibility results
for achieving the security for lazy parties are presented in
Sect. 3. Our secure encryption schemes in various situations
are presented in Sect. 4.

1.5 Notations

A function ε(·) is called negligible if for any constant c,
ε(n) < 1/nc for every sufficiently large n. For two families
of random variables X = {Xn}n∈N and Y = {Yn}n∈N, we say
that X and Y are computationally indistinguishable, denoted

by X ≈c Y , if for every probabilistic polynomial-time (PPT)
distinguisher D, there is a negligible function ε(·) such that
|Pr[D(Xn) = 1] − Pr[D(Yn) = 1]| ≤ ε(n) for every suffi-
ciently large n. For a probabilistic algorithm A, the output
of A when the input is x is denoted by A(x), and denoted by
A(x; r) when the random string r used in A is represented
explicitly.

2. Lazy Parties in Public-Key Encryption

We assume that both a sender and a receiver are lazy parties.
Each lazy party has a set of valuable messages, and wants
a message to be sent securely if it is valuable to that party.
If a message to be encrypted is not valuable to a party, he is
not concerned about the security of the message, and does
not want to use good randomness in the computation. In
this paper, we consider only two types of randomness, good
randomness and bad randomness. Good randomness is a
truly random string but costly. Bad randomness is generated
with zero cost, but is some fixed string.

The security is formalized as follows. Lazy parties are
considered as rational players who have some utility func-
tions and behave rationally to maximize their utilities. We
define a security game between a lazy sender, a lazy re-
ceiver, and an adversary. Then, we say that an encryption
scheme is secure if there is a pair of prescribed strategies of
the sender and the receiver for the game, the game is con-
ducted in a secure way if they follow the strategies, and the
pair of strategies is a good equilibrium solution.

Public-key encryption is defined as an interactive pro-
tocol between a sender and a receiver. The reason is that we
cannot achieve the security if the sender does not have a se-
cret key or the encryption phase is conducted in one round,
which will be described in Sect. 3. In the key generation
phase, both the sender and the receiver generate their own
public key and secret key, then each public key is distributed
to the other player. In the encryption phase, the players con-
duct an interactive protocol in which the sender has a mes-
sage as an input. After the encryption phase, the receiver
can recover the message by running the decryption algo-
rithm. This definition is much more general than the usual
public-key encryption, in which only the receiver generates
a public key and a secret key, and the encryption phase is
just sending a ciphertext from the sender to the receiver.

Definition 1 (Public-key encryption scheme). An n-
round public-key encryption scheme Π is the tuple
({Genw}w∈{S ,R}, {Enci}i∈{1,...,n},Dec) such that

• Key generation: For each w ∈ {S ,R}, on input 1k, Genw
outputs (pkw, skw). LetM denote the message space.

• Encryption: For a message m ∈ M, set stS =

(pkS , pkR, skS ,m), stR = (pkS , pkR, skR), and c0 = ⊥.
Let w ∈ {S ,R} be the first sender, and w̄ ∈ {S ,R} \ {w}
the second sender. For each round i ∈ {1, . . . , n}, when
i is odd, Enci(ci−1, stw) outputs (ci, st′w), and stw is up-
dated to st′w, and when i is even, Enci(ci−1, stw̄) outputs
(ci, st′w̄), and stw̄ is updated to st′w̄.

YASUNAGA: PUBLIC-KEY ENCRYPTION WITH LAZY PARTIES
593

• Decryption: After the encryption phase, on input stR,
Dec outputs m̂.

• Correctness: For any message m ∈ M, after the en-
cryption phase, Dec(stR) = m.

We provide a definition of the chosen plaintext attack
(CPA) game for lazy parties. The game is a variant of the
usual CPA game for public-key encryption. The game is
conducted as follows. The sender S (and the receiver R) has
his valuable message spaceMS (andMR), which is a subset
of {0, 1}∗. First, each player w ∈ {S ,R} are asked to choose
good randomness or bad randomness for the key generation
algorithm. If player w chooses good randomness, a random
string rgw for key generation is sampled as a truly random
string. Otherwise, rgw is generated by the adversary of this
game. Then, pairs of public and secret keys for the two par-
ties are generated using rgw as a random string, and the public
keys are distributed to the sender, the receiver, and the ad-
versary. Next, the adversary generates two sequences m0

and m1 of challenge messages, where mb = (mb,1, . . . ,mb,�)
for b ∈ {0, 1} and some polynomial �. After that, the chal-
lenger chooses b ∈ {0, 1} uniformly at random. The sender
receives mb and is asked to choose good or bad randomness
for the encryption protocol. If he chooses good random-
ness, random strings re

i, j for encryption is sampled as truly
random strings, where re

i, j represents a random string used
in the j-th round of the encryption for the i-th message mb,i.
Otherwise, strings re

i, j’s are generated by the adversary. Sim-
ilarly, the receiver is also asked to choose good or bad ran-
domness for the encryption protocol without seeing the chal-
lenge messages mb, and random strings re

i, j’s are generated
in the same way as for the sender. Then, a sequence of chal-
lenge messages are encrypted using re

i, j’s as random strings.
Finally, the adversary receives a sequence of challenge ci-
phertexts, and outputs a guess b′ ∈ {0, 1}. The outcome
of the game consists of five values Win,ValS ,ValR,NumS ,
and NumR. The value Win takes 1 if the guess of the ad-
versary is correct, namely b = b′, and 0 otherwise. The
value Valw for player w ∈ {S ,R} takes 1 if there is at least
one valuable message for player w in the sequence mb of
challenge messages, and 0 otherwise. The value Numw for
player w ∈ {S ,R} represents the number of times that player
w chose good randomness in the game, which is between 0
and 2.

In the following, we provide a formal definition of the
CPA game for lazy parties. For a probabilistic algorithm
A, we denote by �(A) the length of random bits required in
running A. We denote by Samp(A) an algorithm that samples
a random string from {0, 1}�(A).

Definition 2 (CPA game for lazy parties). Let Π =

({Genw}w∈{S ,R}, {Enci}i∈{1,...,n},Dec) be a public-key encryp-
tion scheme. For an adversary A, the security parameter k,
valuable message spacesMS andMR, and a pair of strate-
gies (σS , σR), we define the following game.

Gamecpa(Π, k, A,MS ,MR, σS , σR):

1. Choice of randomness for key generation: For each

w ∈ {S ,R}, compute xgw ← σw(1k,Mw), where
xgw ∈ {Good,Bad} and we assume that Mw has a
polynomial-size representation. If xgw = Bad, then
given (1k, w), A outputs rgw ∈ {0, 1}�(Genw(1k)). Otherwise
sample rgw ← Samp(Genw(1k)).

2. Key generation: For each w ∈ {S ,R}, generate
(pkw, skw) ← Genw(1k; rgw). LetM be the correspond-
ing message space.

3. Challenge generation: Given (pkS , pkR), A outputs
m0 = (m0,1, . . . ,m0,�) and m1 = (m1,1, . . . ,m1,�), where
� ∈ N is a polynomial in k and mi, j ∈ M for each
i ∈ {0, 1} and j ∈ {1, . . . , �}. Then sample b ∈ {0, 1}
uniformly at random.

4. Choice of randomness for encryption: For each w ∈
{S ,R}, compute xe

w ← σw(pkS , pkR, skw, auxw), where
xe
w ∈ {Good,Bad}, auxS = mb, and auxR = ⊥. If

xe
w = Bad, then given w, A outputs re

i, j ∈ {0, 1}�(Enc j(·))
for each i ∈ {1, . . . , �} and j ∈ {1, . . . , n}. Otherwise
sample re

i, j ← Samp(Enc j(·)) for each i ∈ {1, . . . , �} and
j ∈ {1, . . . , n}. Let w be the first sender, and w̄ the sec-
ond sender, which are determined by Π.

5. Encryption: For i ∈ {1, . . . , �}, do the following. Set
stS = (pkS , pkR, skS ,mb,i), stR = (pkS , pkR, skR), and
ci,0 = ⊥. For j ∈ {1, . . . , n}, when j is odd, com-
pute (ci, j, st′w) ← Enc j(ci, j−1, stw; re

i, j) and stw is up-
dated to st′w, and when j is even, compute s(ci, j, st′w̄)←
Enc j(ci, j−1, stw̄; re

i, j) and stw̄ is updated to st′w̄.

6. Guess: Given {ci, j : i ∈ {1, . . . , �}, j ∈ {1, . . . , n}}, A
outputs b′ ∈ {0, 1}.

7. Output (Win,ValS ,ValR,NumS ,NumR), where Win
takes 1 if b′ = b, and 0 otherwise, Valw takes 1 if
mb,i ∈ Mw for some i ∈ {1, . . . , �}, and 0 otherwise,
and Numw represents the number of times that σw out-
put Good in the game.

Next, we define the utility functions of lazy sender and
receiver for this game. We take the following points into
consideration: (1) If a message to be sent is valuable to
player w, then player w prefers the adversary not to correctly
guess the message. Otherwise, player w does not concern
about the guess of the adversary. (2) Each player prefers
to generate good randomness as few times as possible. (3)
Each player prefers to pay the cost of good randomness if a
message to be sent is valuable to him.

Definition 3 (Utility function for CPA game). Let (σS , σR)
be a pair of strategies of the game Gamecpa. The util-
ity of player w ∈ {S ,R} when the outcome Out =
(Win,ValS ,ValR,NumS ,NumR) happens is defined by

uw(Out) = (−αw) ·Win · Valw + (−βw) · Numw,
where αw, βw ∈ R are some non-negative constant. Let qw be
the maximum number that Numw can take. (qw is either 0,
1, or 2, depending on the scheme Π.) We say that the utility
is non-trivial if αw/2 > qw · βw for each w ∈ {S ,R}.

The utility when the players follow a pair of strategies

594
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.2 FEBRUARY 2016

(σS , σR) is defined by

Uw(σS , σR) = min
A,MS ,MR

{E[uw(Out)]},

whereOut is the outcome of the game Gamecpa(Π, k, A,MS ,
MR, σS , σR), and the minimum is taken over all PPT adver-
saries A and valuable message spaces MS and MR. Note
that Uw(σS , σR) is implicitly a function of the security pa-
rameter k.

In the definition of the utility when players follow a
pair of strategies (σS , σR), we take the minimum over all
possible adversaries and valuable message spaces. This
is because we would like to evaluate a pair of strategies
(σS , σR) by considering the worst-case for possible adver-
saries and valuable message spaces. In other words, we
would like to say that a pair of strategies is good if it is guar-
anteed to yield high utility for any adversary and players,
who are associated with valuable message spaces.

Note that the non-triviality condition of the utility guar-
antees that players have an incentive to use good random-
ness to achieve the security. If players do not use good ran-
domness, then there is an adversary such that Win · Valw
is always 1. The best we can hope for is that the expected
value ofWin·Valw is 1/2 (plus some negligible value), which
increases the utility by αw/2. Since Numw takes at most
qw in the game, the inequality αw/2 > qw · βw means that
achieving the security is worth paying the cost of good ran-
domness. Hereafter, we assume that the utility functions are
non-trivial.

As game theoretic solution concepts, we define the
Nash equilibrium and the strict Nash equilibrium. Since any
strategy that a player can follow should be computable in a
polynomial time and a negligible difference of the outcome
of the game should be ignored for PPT algorithms, we con-
sider a computational Nash equilibrium.

Definition 4 (Computational Nash equilibrium). A pair of
PPT strategies (σS , σR) of the game Gamecpa is called a
computational Nash equilibrium if for every player w ∈
{S ,R} and every pair of PPT strategies (σ′S , σ

′
R), there is

a negligible function ε(·) such that

Uw(σ∗S , σ
∗
R) ≤ Uw(σS , σR) + ε(k),

where (σ∗S , σ
∗
R) = (σ′S , σR) if w = S , (σ∗S , σ

∗
R) = (σS , σ

′
R)

otherwise.

Strict Nash equilibrium is a stronger solution concept
than plain Nash equilibrium, and guarantees that if a player
deviates from the strategy, then the utility of the player de-
creases by a non-negligible amount. The definition is based
on that of [12], which appeared in the context of rational
secret sharing.

Definition 5 (Equivalent strategy). Let (σS , σR) be a pair
of strategies of the game Gamecpa, and σ′w any strategy of
player w ∈ {S ,R}. We say σ′w is equivalent to σw, denoted by
σ′w ≈ σw, if for any PPT adversary A and valuable message

spacesMS andMR,

{Trans(1k, σw)} ≈c {Trans(1k, σ′w)},
where Trans(1k, σw) represents the transcript of the game
Gamecpa(Π, k, A,MS ,MR, σ

∗
S , σ

∗
R), which includes all val-

ues generated in the game except the internal random coin
of σ′w, and (σ∗S , σ

∗
R) = (σ′S , σR) if w = S , (σ∗S , σ

∗
R) =

(σS , σ
′
R) otherwise.

Definition 6 (Computational strict Nash equilibrium). A
pair of strategies (σS , σR) of the game Gamecpa is called
a computational strict Nash equilibrium if

1. (σS , σR) is a Nash equilibrium;

2. For every w ∈ {S ,R} and every PPT strategy
σ′w � σw, there is a constant c > 0 such that
Uw(σ∗S , σ

∗
R) ≤ Uw(σS , σR) − 1/kc for infinitely many

k, where (σ∗S , σ
∗
R) = (σ′S , σR) if w = S , (σ∗S , σ

∗
R) =

(σS , σ
′
R) otherwise.

We define the security of encryption schemes for lazy
parties.

Definition 7 (CPA security for lazy parties). Let Π =
({Genw}w∈{S ,R}, {Enci}i∈{1,...,n},Dec) be a public-key encryp-
tion scheme, and (σS , σR) a pair of strategies of the game
Gamecpa. We say that (Π, σS , σR) is CPA secure with a
(strict) Nash equilibrium for Gamecpa if

1. For any PPT adversary A and valuable message spaces
MS ,MR, there is a negligible function ε(·) such that
Pr[Win · (ValS + ValR) � 0] ≤ 1/2 + ε(k), where
Win,ValS ,ValR are components of the outcome of the
game Gamecpa(Π, k, A,MS ,MR, σS , σR).

2. The pair of strategies (σS , σR) is a computational
(strict) Nash equilibrium.

In the first condition, we evaluate the value of Win ·
(ValS + ValR) since if ValS + ValR = 0, all the messages
chosen by the adversary are not valuable to both the sender
and the receiver.

A solution of a game can be considered a prediction of
how the game will be played. Thus, it is more plausible for
players to follow a scheme with a stronger solution.

Note that the usual CPA security of usual (non-
interactive) public-key encryption is a special case of
the above definition. If the scheme Π consists of
(GenR,Enc1,Dec), a pair of strategies (σS , σR) is such that
both σS and σR always output Good, and the second con-
dition of the security is not considered, then the above se-
curity is equivalent to the usual CPA security of public-key
encryption. If a non-interactive scheme Π is CPA secure in
the usual sense, we say simply that Π is CPA secure.

3. Impossibility Results

In this section, we show that to achieve CPA security for lazy
parties, (1) the sender must generate a secret key and (2) the

YASUNAGA: PUBLIC-KEY ENCRYPTION WITH LAZY PARTIES
595

encryption phase requires at least two rounds. Neither of
them is satisfied in the usual public-key encryption.

Roughly speaking, the reason why secure schemes re-
quire the generation of a secret key for a sender is that if
the messages to be encrypted are valuable to the receiver
but not to the sender, the sender does not use good random-
ness and thus the adversary can correctly guess which of the
challenge messages was encrypted because she knows all
the inputs to the sender.

Furthermore, even if the sender has his secret key, if
the encryption phase is 1-round, there is an adversary who
can guess the challenge correctly. Consider an adversary
who submits challenge messages where one consists of the
same two messages and the other consists of different two
messages, and all the messages are valuable to the receiver
but not to the sender. Then the sender does not use good
randomness, and thus the adversary can choose randomness
for encryption. If she choose the same random strings for
two challenge messages, then although the adversary does
not know the secret key of the sender, since the encryption
is 1-round, she can correctly guess which of the challenges
was encrypted by checking whether given two challenge ci-
phertexts are the same or not.

We show that the above two properties are necessary
for achieving CPA security with a Nash equilibrium.

Proposition 1. For any public-key encryption scheme Π =
({Genw}w∈{S ,R}, {Enci}i∈{1,...,n},Dec) and any pair of strategies
(σS , σR), if GenS does not output skS , then (Π, σS , σR) is
not CPA secure with a Nash equilibrium for Gamecpa.

Proof. Suppose that (Π, σS , σR) is CPA secure with a Nash
equilibrium. Consider an adversary A who submits chal-
lenge messages (m0,m1) such that m0 = m0, m1 = m1,
m0 � m1, and m0,m1 ∈ MR \MS . Since any challenge mes-
sage is not inMS , the best strategy of the sender for A in the
encryption phase is to choose xe

S = Bad regardless of the re-
ceiver’s strategy. Therefore, σS (pkS , pkR, skS , auxS) = Bad
with probability at least 1 − ε(k), where ε(·) is a negligi-
ble function. Then, since A knows all the input to the
sender in the encryption phase, which consists of stS =
(pkS , pkR, auxS ,mb) and the random strings for encryption,
A can correctly guess b from c1,1, . . . , c1,n. This implies that
the first condition of the CPA security does not hold. �

Proposition 2. For any 1-round public-key encryption
schemeΠ = ({Genw}w∈{S ,R},Enc,Dec) and any pair of strate-
gies (σS , σR), (Π, σS , σR) is not CPA secure with a Nash
equilibrium for Gamecpa.

Proof. Suppose that (Π, σS , σR) is CPA secure with a
Nash equilibrium. Consider an adversary A who sub-
mits challenge messages (m0,m1) such that m0 = (m,m),
m1 = (m,m′), m � m′, and m,m′ ∈ MR \ MS .
Since any challenge message is not in MS , the best
strategy of the sender for A in the encryption phase is
to choose xe

S = Bad regardless of the receiver’s strat-
egy, which implies that σS (pkS , pkR, skS , auxS) = Bad

with probability at least 1 − ε(k) for a negligible func-
tion ε(·). Then, A receives the pair of ciphertexts
(c1, c2) such that c1 = Enc(pkS , pkR, skS ,m; re

1) and c2 =

Enc(pkS , pkR, skS ,m∗; re
2), where m∗ is either m or m′. Since

A knows pkS , pkR,m,m′, re
1, r

e
2, the only information A does

not know in c1 and c2 is skS . Hence, c1 = c2 if m∗ = m. By
the correctness property of the encryption scheme, c1 � c2

if m∗ � m. Therefore, A can correctly guess b from c1 and
c2. This implies that the first condition of the CPA security
does not hold. �

4. Secure Encryption Schemes for Lazy Parties

4.1 Two-Round Encryption Scheme

We present a two-round public-key encryption scheme that
is CPA secure with a strict Nash equilibrium. The encryp-
tion phase is conducted as follows. First, the receiver gen-
erates a random string, encrypts it by the public key of the
sender, and sends it to the sender. Next, the sender encrypt a
messages by the one-time pad, in which the sender uses the
random string received from the receiver. The receiver can
recover the message since he knows the random string. Our
scheme is based on any CPA-secure public-key encryption
scheme Π = (Gen,Enc,Dec) in which the message space is
{0, 1}μ and the length of random bits required in Enc is μ.

The description of our two-round scheme Πtwo =
(GenS , {Enci}i∈{1,2},DecR) is the following.

• GenS (1k): Generate (pkS , skS) ← Gen(1k), and output
(pkS , skS).
Let M = {0, 1}μ be the message space, where μ is a
polynomial in k. Set stS = skS and st1

R = pkS .

• Enc1(st1
R): Sample r ∈ {0, 1}μ uniformly at random,

compute c1 ← Enc(pkS , r), set st2
R = r, and output

(c1, st2
R).

Enc2(c1, stS): Compute r̂ ← Dec(skS , c1) and c2 = m⊕
r̂, and output c2.

• DecR(c2, st2
R): Compute m̂ = c2 ⊕ r and output m̂.

We define a pair of strategies (σS , σR) such that

• σS (1k,MS) outputs Good with probability 1.

• σR(pkS , auxR) outputs Good with probability 1.

Theorem 1. If Π is CPA secure, (Πtwo, σS , σR) is CPA se-
cure with a strict Nash equilibrium for Gamecpa.

Proof. First, we show the correctness of the scheme Πtwo.
Note that c1 = Enc(pkS , r), c2 = m ⊕ Dec(skS , c1), and the
output of DecR is m̂ = c2 ⊕ r. It follows from the correctness
of the underlying schemeΠ that m̂ = (m⊕Dec(skS , c1))⊕r =
m ⊕ r ⊕ r = m.

Next, we show that for any PPT adversary A, valu-
able message spaces MS and MR, after running the game
Gamecpa with a pair of strategies (σS , σR), we have Pr[Win ·
(ValS +ValR) � 0] ≤ 1/2+ ε(k) for some negligible function

596
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.2 FEBRUARY 2016

ε(·). It is sufficient to show that Pr[Win = 1] ≤ 1/2 + ε(k).
In the game Gamecpa with (σS , σR), the adversary A needs
to guess b from (pkS , c1, c2,m0,m1). For any m0 ∈ m0,m1 ∈
m1, it follows from the security of the underling scheme
Π = (Gen,Enc,Dec) that

{pkS ,Enc(pkS , r), r ⊕ m0,m0,m1}
≈c {pkS ,Enc(pkS , r

′), r ⊕ m0,m0,m1}
= {pkS ,Enc(pkS , r

′), r′′,m0,m1}
= {pkS ,Enc(pkS , r

′), r ⊕ m1,m0,m1}
≈c {pkS ,Enc(pkS , r), r ⊕ m1,m0,m1},

where r, r′, r′′ are independently and uniformly sampled
from the message space {0, 1}μ. This implies that Pr[Win =
1] ≤ 1/2 + ε(k) for some negligible function ε(·).

Finally, we show that (σS , σR) is a strict Nash equi-
librium. It is required to show that (σS , σR) is a Nash
equilibrium. Suppose that the receiver follows σR. When
σS (1k,MS) outputs Bad, which increases the utility of the
sender by βS , there is an adversary who can compute skS

correctly, and thus guess b correctly. If all the challenge
messages are in MS , this reduces the utility of the sender
by αS /2. Thus, when the receiver follows σR, since any de-
viation from σS reduces the utility by αS /2 − βS > 0, the
strategy σS maximizes the utility of the sender. Suppose
that the sender follows σS . When σR(pkS , auxR) outputs
Bad, which increases the utility of the receiver by βR, there
is an adversary who computes mb = r ⊕ c2 by using c2 and
r = re

R. If all the challenge messages are inMR, this reduces
the utility of the receiver by αR/2. Hence, when the sender
follows σS , since any deviation from σR reduces the utility
by αR/2 − βR > 0, the strategy σR maximizes the utility of
the receiver. Therefore, the pair (σS , σR) is a Nash equilib-
rium.

To show the second condition of the strict Nash equi-
librium, consider a strategy σ′S of the sender such that
σ′S � σS . This implies that σ′S (1k,MS) outputs Bad with
probability at least 1/kc for a constant c. By the same ar-
gument as above, this reduces the utility of the sender by
(1/kc) · (αS /2 − βS), namely US (σ′S , σR) ≤ US (σS , σR) −
(αS /2 − βS)/kc). Consider a strategy σ′R such that σ′R � σR,
which implies that σ′R(pkS , auxR) outputs Bad with proba-
bility at least 1/kc for a constant c. As above, this reduces
the utility of the receiver by (1/kc) · (αR/2 − βR), namely
UR(σS , σ

′
R) ≤ UR(σS , σR) − (αR/2 − βR)/kc. Therefore

(σS , σR) is a strict Nash equilibrium. �

4.2 Additional Information to the Receiver

We consider a situation in which the receiver may know
whether a message to be encrypted is valuable to the re-
ceiver or not. The situation can be reflected by changing
the game Gamecpa such that the adversary can choose either
“auxR = ⊥” or “auxR = ValR” in the challenge generation
phase. Let Gamecpa

R denote the modified game.
Then, the scheme presented in Sect. 4.1 is no longer

secure. Intuitively, this is because the receiver does not gen-
erate good randomness if a message to be encrypted is not
valuable to him.

Proposition 3. For any pair of strategies (σS , σR),
(Πtwo, σS , σR) is not CPA secure with a Nash equilibrium
for Gamecpa

R .

Proof. Suppose that (Πtwo, σS , σR) is CPA secure with a
Nash equilibrium. Consider an adversary A who sets auxR =

ValR and submits challenge messages (m0,m1) such that
m0 = m0, m1 = m1, m0 � m1, and m0,m1 ∈ MS \
MR. The best strategy of the receiver for A is to choose
xe

R = Bad regardless of the sender’s strategy. Therefore,
σS (pkS , auxR) = Bad with probability at least 1 − ε(k),
where ε(·) is a negligible function. Since A knows the ran-
dom string r for encryption, she can correctly guess b by
computing mb = c2 ⊕ r. This implies that the first condition
of the CPA security does not hold. �

We present a three-round encryption scheme that is se-
cure for Gamecpa

R . In the encryption phase, first, the sender
and the receiver perform a key-agreement protocol that gen-
erates a random string shared between them. The shared
string is good randomness if one of the sender and the re-
ceiver uses good randomness in the key-agreement proto-
col. Then, the sender uses the shared string as random-
ness to encrypt a message. Finally, after recovering a mes-
sage, the receiver encrypt the message by the sender’s pub-
lic key and makes it public. As described later, the fi-
nal step is necessary to achieve the security. Our scheme
is based on any CPA-secure public-key encryption scheme
Π = (Gen,Enc,Dec) in which the message space is {0, 1}2μ
and the length of random bits required in Enc is μ.

The description of the encryption scheme Πthree =
({Genw}w∈{S ,R}, {Enci}i∈{1,2,3}) is the following. The decryp-
tion algorithm does not exist in Πthree since the receiver de-
crypts a message in computing Enc3.

• Genw(1k) : Generate (pkw, skw) ← Gen(1k), and output
(pkw, skw).
Let M = {0, 1}2μ be the message space, where μ is a
polynomial in k. Set st1

S = (pkS , pkR, skS) and st1
R =

(pkS , pkR, skR).

• Enc1(st1
R): Sample r1 ∈ {0, 1}2μ uniformly at random,

compute c1 ← Enc(pkS , r1), set st2
R = (st1

R, r1), and
output (c1, st2

R).
Enc2(c1, st1

S): Sample r2 ∈ {0, 1}2μ uniformly at ran-
dom and compute c2 ← Enc(pkR, r2) and r̂1 ←
Dec(skS , c1). Then rL ◦ rR = r̂1 ⊕ r2 such that |rL| =
|rR| = μ, compute c3 ← Enc(pkR,m; rL), and output
((c2, c3), st2

S), where x ◦ y denote the concatenation of
strings x and y, and st2

S = st1
S .

Enc3((c2, c3), st2
R): Compute r̂2 ← Dec(skR, c2), set r̂L ◦

r̂R = r1 ⊕ r̂2, compute m̂ ← Dec(skR, c3) and c4 ←
Enc(pkS , m̂; r̂R), and make c4 public. The decrypted
message is m̂.

We define a pair of strategies (σS , σR) such that

YASUNAGA: PUBLIC-KEY ENCRYPTION WITH LAZY PARTIES
597

• σS (1k,MS) outputs Good with probability 1. σS (pkS ,
pkR, skS , auxS) outputs Good if mb,i ∈ MS for some
i ∈ {1, . . . , �}, and Bad otherwise.

• σR(1k,MR) outputs Good with probability 1. σR(pkS ,
pkR, skR, auxR) outputs Good if auxR = ⊥ or ValR = 1,
and Bad otherwise.

At first glance, it does not seem necessary to make c4

public at the third round of the encryption phase. However,
it is necessary to do so because if not, the sender can achieve
the security without using good randomness in the key gen-
eration phase. Then, the receiver cannot achieve the security
for his valuable messages. Consider the case that a message
to be sent is valuable only to the receiver. In the encryp-
tion phase, the sender will choose bad randomness, and the
receiver will choose good randomness. However, since bad
randomness was chosen in the key generation phase, the ran-
domness chosen by the receiver will be revealed to the ad-
versary by observing the first-round ciphertext. Hence, the
adversary can correctly guess the message.

Theorem 2. If Π is CPA secure, (Πthree, σS , σR) is CPA se-
cure with a strict Nash equilibrium for Gamecpa

R .

Proof. First, we show the correctness of the scheme Πthree.
Note that c1 = Enc(pkS , r1), c2 = Enc(pkS , r2), c3 =

Enc(pkR,m; rL), and the decrypted message is m̂ =

Dec(skS , c3). It follows from the correctness of the underly-
ing scheme Π that m̂ = m.

Next, we show that for any PPT adversary A, valu-
able message spaces MS and MR, after running the game
Gamecpa

R with a pair of strategies (σS , σR), we have Pr[Win ·
(ValS +ValR) � 0] ≤ 1/2+ ε(k) for some negligible function
ε(·). Without loss of generality, we assume that ValS+ValR �
0. We will show that Pr[Win = 1] ≤ 1/2 + ε(k). Since
ValS +ValR � 0 and the players follow (σS , σR), at least one
of xe

S and xe
R will be Good. Suppose that xe

S = Good and
xe

R = Bad. When A chose m0,m1 as the challenge messages,
the view of A is

{pkS , pkR, (r1, re), c1, c2, c3, c4}
= {pkS , pkR, (r1, re),Enc(pkS , r1; re),Enc(pkR, r2),

Enc(pkR,mb; rL),Enc(pkS ,mb; rR)}
≈c {pkS , pkR, (r1, re),Enc(pkS , r1; re),Enc(pkR, r

′
2),

Enc(pkR,mb; rL),Enc(pkS ,mb; rR)}
≈c {pkS , pkR, (r1, re),Enc(pkS , r1; re),Enc(pkR, r

′
2),

Enc(pkR,m1−b; rL),Enc(pkS ,m1−b; rR)}
≈c {pkS , pkR, (r1, re),Enc(pkS , r1; re),Enc(pkR, r2),

Enc(pkR,m1−b; rL),Enc(pkS ,m1−b; rR)},
where re is the randomness used in computing c1 ←
Enc1(pkS , r1), r2 and r′2 are uniformly random strings, and
rL ◦ rR = r1 ⊕ r2. The above relations follow from the
security of the underlying scheme Π. Therefore, we have
that Pr[Win = 1] ≤ 1/2 + ε(k). The proof of the case that
xe

S = Bad and xe
R = Good can be done in a similar way.

Finally we show that the pair of strategies (σS , σR) is

a strict Nash equilibrium. Suppose that the receiver follows
σR. Consider any strategy σ′S of the sender, and an adver-
sary who set auxR = ValR and submits challenge messages
such that all of them are in MS \ MR. If σ′S (1k,MS) out-
puts Bad, which increases the utility of the sender by βS , the
adversary can compute skS correctly, and thus can guess b
correctly from c4 = Enc(pkS ,m). If σ′S (pkS , pkR, skS , auxS)
outputs Bad, which also increases the utility of the sender by
βS , since the receiver chooses Bad in the encryption phase,
the adversary can compute r1⊕r2 correctly, and guess b cor-
rectly from c3 = Enc(pkR,m; rL), where r1 ⊕ r2 = rL ◦ rR.
Since the adversary can guess b correctly in both cases, the
utility of the sender decreases by at least αS /2 − 2βS > 0 if
the sender deviated from σS . This implies that the strategy
σS maximizes the utility of the sender if the receiver follows
σR. Next, suppose that the sender follows σS . Consider any
strategy σ′R of the receiver, and an adversary who submits
challenge messages such that all of them are inMR \ MS .
If σ′R(1k,MR) outputs Bad, which increases the utility of
the receiver by βR, the adversary can compute skR correctly,
and thus can guess b correctly from c3 = Enc(pkR,m). If
σ′R(pkS , pkR, skR, auxR) outputs Bad, which increases the
utility of the receiver by βR, since the sender chooses Bad
in the encryption phase, the adversary can compute r1 ⊕ r2

correctly, and guess b correctly from c4 = Enc(pkR,m; rR),
where r1 ⊕ r2 = rL ◦ rR. Since the adversary can guess b
correctly in both cases, the utility of the receiver decreases
by at least αR/2 − 2βR > 0 if the receiver deviated from σS .
This implies that the strategy σR maximizes the utility of the
receiver if the sender follows σS . Therefore, (σS , σR) is a
Nash equilibrium.

To show the second condition of the strict Nash equi-
librium, consider any strategy σ′S of the sender such that
σ′S � σS . This implies that, if auxR = ValR and all the
challenge messages are in MS \ MR, either σ′S (1k,MS)
or σ′S (pkS , pkR, skS , auxS) outputs Bad with probability at
least 1/kc for a constant c. By the same argument as above,
this reduces the utility of the sender by (1/kc) · (αS /2−2βS),
namely US (σ′S , σR) ≤ US (σS , σR) − (αS /2 − 2βS)/kc. Con-
sider any strategy σ′R of the receiver such that σ′R � σS ,
which implies that, if all the challenge messages are in
MR\MS , either σ′R(1k,MR) or σ′R(pkS , pkR, skR, auxR) out-
puts Bad with probability at least 1/kc for a constant c. As
above, this implies that UR(σS , σ

′
R) ≤ UR(σS , σR)− (αR/2−

2βR)/kc. Therefore, the pair of strategy (σS , σR) is a strict
Nash equilibrium. �

4.3 Additional Information to the Sender and the Receiver

We study the case in which both the sender and the receiver
may know that a message to be encrypted is valuable to
them. The situation is different from that of the previous
section because the sender may be able to know the value
of a message for the receiver, and the receiver vice versa.
We change the game Gamecpa

R such that the adversary can
choose either “auxS = mb” or “auxS = (mb,ValR)”, and

598
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.2 FEBRUARY 2016

either “auxR = ⊥”, “auxR = ValR”, “auxR = ValS ”, or
“auxR = (ValS ,ValR)” in the challenge generation phase.
Let Gamecpa

S,R denote the modified game.
Then, the scheme Πthree has two different strict Nash

equilibria.

Proposition 4. There are two pairs of strategies (σS , σR)
and (ρS , ρR) such that σS � ρS , σR � ρR, and both
(Πthree, σS , σR) and (Πthree, ρS , ρR) are CPA secure with a
strict Nash equilibrium for Gamecpa

S,R. Furthermore, there is
a PPT adversary A and valuable message spaces MS and
MR such that E[uS (Outρ)] − E[uS (Outσ)] ≥ βS − ε(k) and
E[uR(Outσ)]−E[uR(Outρ)] ≥ βR − ε(k) for every sufficiently
large k, where Outσ is the outcome of the game Gamecpa

S,R in
which players follow (σS , σR), Outρ is the outcome of the
game Gamecpa

S,R in which players follow (ρS , ρR), and ε(·) is
a negligible function.

Proof. We define (σS , σR) and (ρS , ρR) as follows.

• σS (1k,MS) outputs Good with probability 1.
σS (pkS , pkR, skS , auxS) outputs Good if mb,i ∈ MS for
some i ∈ {1, . . . , �}, and Bad otherwise.

• σR(1k,MR) outputs Good with probability 1.
σR(pkS , pkR, skR, auxR) outputs Good if

– auxR = ⊥,

– auxR = ValS and ValS = 0,

– auxR = ValR and ValR = 1, or

– auxR = (ValS ,ValR), ValS = 0, and ValR = 1,

and Bad otherwise.

• ρS (1k,MS) outputs Good with probability 1.
ρS (pkS , pkR, skS , auxS) outputs Good if

– auxS = mb and mb,i ∈ MS for some i ∈ {1, . . . , �},
or

– auxS = (mb,ValR), mb,i ∈ MS for some i ∈
{1, . . . , �}, and ValR = 0,

and Bad otherwise.

• ρR(1k,MR) outputs Good with probability 1.
ρR(pkS , pkR, skR, auxR) outputs Good if

– auxR = ⊥,

– auxR = ValS ,

– auxR = ValR and ValR = 1, or

– auxR = (ValS ,ValR) and ValR = 1,

and Bad otherwise.

The difference between the outputs of (σS , σR) and
(ρS , ρR) is only when auxS = (mb,ValR), auxR =

(ValS ,ValR), and ValS = ValR = 1. They, only the sender
uses good randomness in (σS , σR), while only the receiver
uses good randomness in (ρS , ρR). Hence we have that
σS � ρS and σR � ρR. In the proof of Theorem 2, we
show that, if at least one of xe

S and xe
R is Good, Πthree sat-

isfies the first condition of the CPA security. Thus, we can

verify that both (Πthree, σS , σR) and (Πthree, ρS , ρR) satisfy
the first condition of the CPA security.

Consider an adversary who sets auxS = (mb, ValR) and
auxR = (ValS , ValR), and submits challenge messages such
that all of them are inMS ∩MR. For this adversary, σS (pkS ,
pkR, skS , auxS) outputs Good and σR(pkS , pkR, skR, auxR)
outputs Bad, while ρS (pkS , pkR, skS , auxS) outputs Bad and
ρR(pkS , pkR, skR, auxR) outputsGood. Since it follows from
the above argument that the expected value of Win · Valw is
at most 1/2+ ε(k) for a negligible function ε(·), we have that
E[uS (Outρ)]−E[uS (Outσ)] ≥ βS − ε′(k) and E[uR(Outσ)]−
E[uR(Outρ)] ≥ βR − ε′(k) for a negligible function ε′(·).

We show that (σS , σR) is a strict Nash equilibria. We
follow the same reasoning as the proof of Theorem 2. It
is sufficient to show that, for each w ∈ {S ,R}, if player w
follows a different strategy σ′w from σw, then the utility of
player w decreases by some constant value. We show that if
σ′w outputs Bad and σw outputs Good, there exists an adver-
sary who can guess b correctly, which decreases the utility
of player w by at least αw/2 − 2βw > 0. First, note that, for
each w ∈ {S ,R}, if σ′w(1k,Mw) outputs Bad, the adversary
can guess b correctly by the same argument as the proof
of Theorem 2. Suppose that σ′S (pkS , pkR, skS , auxS) out-
puts Bad and σS (pkS , pkR, skS , auxS) outputs Good. Con-
sider an adversary who sets auxR = ValR and submits
challenge messages such that all of them are in MS \
MR. Since the receiver chooses xe

R = Bad for this ad-
versary, the adversary can guess b correctly from r1 ⊕ r2

and c3 = Enc(pkR,m; rL), where r1 ⊕ r2 = rL ◦ rR.
Next, suppose that σ′R(pkS , pkR, skS , auxR) outputs Bad and
σR(pkS , pkR, skS , auxR) outputs Good. Consider an adver-
sary who submits challenge messages such that all of them
are inMR \MS . Since the sender chooses xe

S = Bad for this
adversary, the adversary can guess b correctly from r1 ⊕ r2

and c4 = Enc(pkR,m; rR), where r1⊕ r2 = rL ◦ rR. Therefore,
by the same reasoning as the proof of Theorem 2, (σS , σR)
is a strict Nash equilibrium. By the same argument, we can
show that (ρS , ρR) is also a strict Nash equilibrium. �

As shown in the proof, the difference between the
outputs of (σS , σR) and (ρS , ρR) is only when auxS =

(mb,ValR), auxR = (ValS ,ValR), and ValS = ValR = 1. Then,
only the sender uses good randomness in (σS , σR), while
only the receiver uses good randomness in (ρS , ρR). There-
fore, the sender prefers to following (ρS , ρR), while the re-
ceiver prefers to following (σS , σR). It is difficult to deter-
mine which pair of strategies the players follow. If the pro-
tocol have started, but the sender and the receiver have not
agreed on which pair of strategies they follow, the outcome
can be worse for both of them. If the sender follows (ρS , ρR)
and the receiver follows (σS , σR) when ValS = ValR = 1,
in this case both players are to use bad randomness in the
encryption, thus the adversary can correctly guess b with
probability 1. Such an outcome should be avoided for both
players.

There is a simple way of avoiding that outcome. In the
encryption phase, if xe

R � Good, the receiver uses the all-

YASUNAGA: PUBLIC-KEY ENCRYPTION WITH LAZY PARTIES
599

zero string as a random string. Since the sender can verify if
the random string chosen by the receiver is all-zero or not,
if so, the sender will use good randomness if a message is
valuable. The all-zero string is a signal that the receiver did
not use good randomness.

4.4 Signcryption with an Additional Assumption

A signcryption scheme is one of cryptographic primitives
that achieves both public-key encryption and signature si-
multaneously. In particular, a secret key for encryption is
also used as a signing key for signature, and a public key for
encryption is also used as a verification key for signature.

We show that signcryption schemes with some prop-
erty can achieve CPA security for lazy parties if we add an
assumption for players. The assumption is that players do
not want to reveal their secret keys. This is plausible since,
if the secret key of some player is revealed, it is equivalent
to the fact that the encrypted messages to the player are re-
vealed and the signatures of the player are forged.

Formally, a signcryption scheme Πsigenc consists of
three PPT algorithms ({Genw}w∈{S ,R},SigEnc,VerDec) such
that

• Genw(1k): Output a signing/decryption key (secret key)
skw and a verification/encryption key (public key) pkw;
LetM denote the message space.

• SigEnc(pkR, skS ,m): For a message m ∈ M, output the
ciphertext c;

• VerDec(pkS , skR, c): For a ciphertext c, output ⊥ if the
verification fails, and the decrypted message m̂ other-
wise.

Regarding the security, we only require the usual CPA
security as a public-key encryption scheme in which the
sender also generates the secret key and the public key.

Some signcryption schemes (e.g., [28]) have the key-
exposure property that, if the randomness used in SigEnc is
revealed, then the secret key of the sender is efficiently com-
putable from the randomness. This property seems to be un-
desirable in a standard setting. However, if a signcryption
scheme with key-exposure property is used as a public-key
encryption scheme, it can achieve CPA security for lazy par-
ties.

We modify the game Gamecpa such that the adversary
outputs (b′, sk′S) in the guess phase, and Secret is included
in the output of the game, where Secret takes 1 if skS = sk′S
and 0 otherwise. Let Gamecpa

secret denote the modified game.
The utility function for the sender when the outcome

Out = (Win,ValS ,ValR,NumS ,NumR,Secret) happens is
defined by

uS (Out) = (−αS) ·Win ·ValS +(−βS) ·NumS +(−γS) ·Secret,
where γS ∈ R is a non-negative constant such that γS >
αS /2 + qS · βS . The condition on γS implies that achieving
Secret = 0 is the most valuable to the sender.

We define a pair of strategies (σS , σR) for the game

Gamecpa
secret such that

• σS (1k,MS) outputs Good with probability 1.
σS (pkS , skS , auxS) outputs Good with probability 1.

• σR(1k,MR) outputs Good with probability 1.

Theorem 3. Let Πsigenc = ({Genw}w∈{S ,R},SigEnc,VerDec)
be a signcryption scheme with CPA security and key-
exposure property. Then (Πsigenc, σS , σR) is CPA secure
with a strict Nash equilibrium for the game Gamecpa

secret.

Proof. The first condition of the CPA security follows from
the CPA security of Πsigenc. Hence, we show the second
condition, namely, (σS , σR) is a strict Nash equilibrium for
Gamecpa

secret.
First, we show that (σS , σR) is a Nash equilibrium.

Suppose that the receiver follows σR. Let σ′S be a strat-
egy of the sender. If σ′S (1k,MS) outputs Bad, then an
adversary chooses the random string of the key genera-
tion algorithm, and thus can obtain the secret key skS cor-
rectly. If σ′S (pkS , pkR, skS , auxS) outputs Bad, then the ad-
versary chooses th random string re of the ciphertext c =
SigEnc(pkR, skS ,mb; re), and can obtain the secret key skS

by the key-exposure property of Πsigenc. In either case, the
adversary can obtain skS , and thus the utility of the sender
takes some negative value. Since the utility when the sender
follows σS is non-negative, σS maximizes the utility of the
sender when the receiver follows σR. Next, suppose that
the sender follows σS . Consider any strategy σ′R of the re-
ceiver and an adversary who submits challenge messages
(m0,m1) such that m0 = (m,m),m1 = (m,m′),m � m′,
and m,m′ ∈ MR. If σ′R(1k,MS) outputs Bad, the adver-
sary can compute skR, and thus guess b correctly by com-
puting Dec(pkS , skR, c), which implies that the utility of the
sender takes some negative value. Thus, the strategy σR

maximizes the utility of the receiver when the sender fol-
lows σS . Therefore, (σS , σR) is a Nash equilibrium.

To show the second condition of the strict Nash
equilibrium, consider any strategy σ′S of the sender such
that σ′S � σS . This implies that either σ′S (1k,MS) or
σ′S (pkS , pkR, skS , auxS) outputs Bad with probability at
least 1/kc for a constant c. By the same argument above,
this reduces the utility of the sender by at least (1/kc) · (γS −
αS /2−2βS). Next, consider any σ′R of the receiver such that
σ′R � σR. This implies that σ′R(1k,MS) outputs Bad with
probability at least 1/kc for a constant c. As above, this re-
duces the utility of the receiver by at least (1/kc)·(αR/2−βR).
Therefore, (σS , σR) is a strict Nash equilibrium. �

Acknowledgments

The author would like to thank Keisuke Tanaka and Keita
Xagawa for their constructive comments and suggestions.
The author would also like to thank anonymous reviewers
for their helpful comments and suggestions.

This research was supported in part by JSPS Grant-in-
Aid for Scientific Research Numbers 23500010, 24240001,

600
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.2 FEBRUARY 2016

25106509, and 15H00851.

References

[1] I. Abraham, D. Dolev, R. Gonen, and J. Halpern, “Distributed com-
puting meets game theory: Robust mechanisms for rational se-
cret sharing and multiparty computation,” Proc. Twenty-Fifth An-
nual ACM Symposium on Principles of Distributed Computing,
PODC’06, pp.53–62, 2006.

[2] G. Asharov, R. Canetti, and C. Hazay, “Towards a game theo-
retic view of secure computation,” Advances in Cryptology, EU-
ROCRYPT 2011, Lecture Notes in Computer Science, vol.6632,
pp.426–445, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[3] G. Asharov and Y. Lindell, “Utility dependence in correct and fair
rational secret sharing,” J. Cryptol., vol.24, no.1, pp.157–202, 2011.

[4] Y. Aumann and Y. Lindell, “Security against covert adversaries: Ef-
ficient protocols for realistic adversaries,” J. Cryptol., vol.23, no.2,
pp.281–343, 2010.

[5] M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H.
Shacham, and S. Yilek, “Hedged public-key encryption: How to
protect against bad randomness,” Advances in Cryptology, ASI-
ACRYPT 2009, Lecture Notes in Computer Science, vol.5912,
pp.232–249, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[6] C. Bosley and Y. Dodis, “Does privacy require true randomness?,”
Theory of Cryptography, Lecture Notes in Computer Science,
vol.4392, pp.1–20, 2007.

[7] R. Canetti, U. Feige, O. Goldreich, and M. Naor, “Adaptively secure
multi-party computation,” Proc. Twenty-Eighth Annual ACM Sym-
posium on Theory of Computing, STOC’96, pp.639–648, 1996.

[8] R. Canetti and R. Ostrovsky, “Secure computation with honest-look-
ing parties (extended abstract): What if nobody is truly honest?,”
Proc. Thirty-First Annual ACM Symposium on Theory of Comput-
ing, STOC’99, pp.255–264, 1999.

[9] Y. Dodis, A. López-Alt, I. Mironov, and S. Vadhan, “Differen-
tial privacy with imperfect randomness,” Advances in Cryptology,
CRYPTO 2012, Lecture Notes in Computer Science, vol.7417,
pp.497–516, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[10] Y. Dodis, S.J. Ong, M. Prabhakaran, and A. Sahai, “On the
(im)possibility of cryptography with imperfect randomness,” 45th
Annual IEEE Symposium on Foundations of Computer Science,
pp.196–205, 2004.

[11] Y. Dodis and T. Rabin, “Cryptography and game theory,” in Algo-
rithmic Game Theory, N. Nisan, T. Roughgarden, E. Tardos, and
V.V. Vazirani, eds., pp.181–206, Cambridge University Press, 2007.

[12] G. Fuchsbauer, J. Katz, and D. Naccache, “Efficient rational secret
sharing in standard communication networks,” Theory of Cryptog-
raphy, Lecture Notes in Computer Science, vol.5978, pp.419–436,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[13] S.D. Gordon and J. Katz, “Rational secret sharing, revisited,” Se-
curity and Cryptography for Networks, Lecture Notes in Computer
Science, vol.4116, pp.229–241, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006.

[14] R. Gradwohl, “Rationality in the full-information model,” Theory
of Cryptography, Lecture Notes in Computer Science, vol.5978,
pp.401–418, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[15] A. Beimel, A. Groce, J. Katz, and I. Orlov, “Fair computation with
rational players,” IACR Cryptology ePrint Archive, 2011:396, 2011.

[16] A. Groce, J. Katz, A. Thiruvengadam, and V. Zikas, “Byzan-
tine agreement with a rational adversary,” Automata, Languages,
and Programming, Lecture Notes in Computer Science, vol.7392,
pp.561–572, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[17] J.Y. Halpern, “Computer science and game theory,” in The New Pal-
grave Dictionary of Economics, S.N. Durlauf and L.E. Blume, eds.,
Palgrave Macmillan, 2008.

[18] J.Y. Halpern and R. Pass, “Game theory with costly computation,”
Innovations in Computer Science, pp.120–142, 2010.

[19] J. Halpern and V. Teague, “Rational secret sharing and multiparty

computation,” Proc. Thirty-Sixth Annual ACM Symposium on The-
ory of Computing, STOC’04, p.623–632, 2004.

[20] H. Higo, K. Tanaka, A. Yamada, and K. Yasunaga, “A game-the-
oretic perspective on oblivious transfer,” Information Security and
Privacy, Lecture Notes in Computer Science, vol.7372, pp.29–42,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[21] H. Higo, K. Tanaka, and K. Yasunaga, “Game-theoretic security for
bit commitment,” Advances in Information and Computer Security,
Lecture Notes in Computer Science, vol.8231, pp.303–318, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

[22] J. Katz, “Bridging game theory and cryptography: Recent results
and future directions,” Theory of Cryptography, Lecture Notes in
Computer Science, vol.4948, pp.251–272, Springer, 2008.

[23] G. Kol and M. Naor, “Cryptography and game theory: Design-
ing protocols for exchanging information,” Theory of Cryptogra-
phy, Lecture Notes in Computer Science, vol.4948, pp.320–339,
Springer, 2008

[24] G. Kol and M. Naor, “Games for exchanging information,” Proc.
Fourtieth Annual ACM Symposium on Theory of Computing,
STOC’08, pp.423–432, 2008.

[25] J.L. McInnes and B. Pinkas, “On the impossibility of private key
cryptography with weakly random keys,” Advances in Cryptol-
ogy, CRYPT0’90 Lecture Notes in Computer Science, vol.537,
pp.421–435, Springer, 1990.

[26] S. Micali and A. Shelat, “Purely rational secret sharing (extended
abstract)” Theory of Cryptography, Lecture Notes in Computer Sci-
ence, vol.5444, pp.54–71, Springer, 2009.

[27] S.J. Ong, D.C. Parkes, A. Rosen, and S.P. Vadhan, “Fairness with an
honest minority and a rational majority,” Theory of Cryptography,
Lecture Notes in Computer Science, vol.5444, pp.36–53, Springer,
2009.

[28] Y. Zheng, “Digital signcryption or how to achieve cost(signature &
encryption) � (signature) + cost(encryption),” Advances in Cryp-
tology, CRYPTO’97, Lecture Notes in Computer Science, vol.1294,
pp.165–179, Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

Kenji Yasunaga is an Assistant Professor
at Kanazawa University. He received his B.E.,
M.S., and Ph.D. degrees from Osaka University
in 2003, 2005, and 2008, respectively. His re-
search interests are in coding theory and cryp-
tography.

http://dx.doi.org/10.1145/1146381.1146393
http://dx.doi.org/10.1007/978-3-642-20465-4_24
http://dx.doi.org/10.1007/s00145-010-9064-z
http://dx.doi.org/10.1007/s00145-009-9040-7
http://dx.doi.org/10.1007/978-3-642-10366-7_14
http://dx.doi.org/10.1007/978-3-540-70936-7_1
http://dx.doi.org/10.1145/237814.238015
http://dx.doi.org/10.1145/301250.301313
http://dx.doi.org/10.1007/978-3-642-32009-5_29
http://dx.doi.org/10.1109/focs.2004.44
http://dx.doi.org/10.1017/cbo9780511800481.010
http://dx.doi.org/10.1007/978-3-642-11799-2_25
http://dx.doi.org/10.1007/11832072_16
http://dx.doi.org/10.1007/978-3-642-11799-2_24
https://eprint.iacr.org/2011/396
http://dx.doi.org/10.1007/978-3-642-31585-5_50
http://dx.doi.org/10.1057/9780230226203.0287
http://dx.doi.org/10.1145/1007352.1007447
http://dx.doi.org/10.1145/1007352.1007447
http://dx.doi.org/10.1007/978-3-642-31448-3_3
http://dx.doi.org/10.1007/978-3-642-41383-4_20
http://dx.doi.org/10.1007/978-3-540-78524-8_15
http://dx.doi.org/10.1007/978-3-540-78524-8_18
http://dx.doi.org/10.1145/1374376.1374437
http://dx.doi.org/10.1007/3-540-38424-3_31
http://dx.doi.org/10.1007/978-3-642-00457-5_4
http://dx.doi.org/10.1007/978-3-642-00457-5_3
http://dx.doi.org/10.1007/bfb0052234

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

