
A Game-Theoretic Perspective on Oblivious Transfer

Abstract

Asharov, Canetti, and Hazay (Eurocrypt 2011) studied how game-theoretic concepts can be
used to capture the cryptographic properties of correctness, privacy, and fairness in two-party
protocols in the presence of fail-stop adversaries. Based on their work, we characterize the
properties of “two-message” oblivious transfer protocols in terms of game-theoretic concepts.
Specifically, we present a single two-player game defined using a two-message OT protocol such
that the OT protocol satisfies the cryptographic properties of correctness and privacy in the
presence of malicious adversaries if and only if the strategy of honestly following the protocol
is in a Nash equilibrium in the game.

1 Introduction

1.1 Background

Cryptographic protocols are designed for parties who follow them to guarantee some properties
such as correctness and privacy. In many cases, such properties are discussed in a way that if
some player honestly follow the protocol, she can achieve some desirable properties even if some
of participants of the protocol are controlled by an adversary. Game theory studies the behavior
of “rational” parties interacting with each other. One of the interplay between cryptography and
game theory is to design cryptographic protocols in the presence of rational parties, who are neither
honest nor malicious. A line of work on rational secret sharing [10, 14, 1, 7, 12, 13, 16, 15, 3, 6] is
in this direction.

Recently, Asharov, Canetti, and Hazay [2] have studied how game-theoretic concepts can be used
to capture the cryptographic properties such as correctness, privacy, and fairness. In particular,
they characterize these properties in terms of a game theoretic concept, Nash equilibrium, in
the setting of secure two-party protocols in the presence of fails-stop adversaries. Cryptographic
properties of two-party protocols are characterized in a way that the protocol satisfies a “certain”
cryptographic property if and only if the strategy of honestly following the protocol is a Nash
equilibrium in a “certain” game defined using the protocol in which the player has a “certain”
payoff function. Regarding the cryptographic properties of correctness and privacy, they showed a
game together with a payoff function that is equivalent to these properties. Regarding fairness, they
introduced a new cryptographic fairness that has an equivalent game-theoretic characterization.

1.2 This Work

Based on the work of Asharov et al. [2], we further explore how the crypotographic properties can
be captured by game-theoretic concepts. In particular, we characterize the properties of oblivious
transfer, which is one of the well-studied two-party protocol, in terms of game-theoretic concepts.
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Oblivious transfer (OT) is a protocol between a sender and a receiver. The sender has two inputs
x0 and x1, and the receiver has an input c ∈ {0, 1}. After running the protocol, the receiver obtains
xc while the sender obtains nothing. Privacy is considered both for the sender and the receiver.
The sender’s privacy requires that the receiver learns nothing about x1−c. The receiver’s privacy
requires that the sender learns nothing about the choice bit c. In this work, we present a game
defined using a two-message OT protocol together with the payoff functions of the players, a sender
and a receiver, such that the OT protocol satisfies the cryptographic properties of correctness and
privacy in the presence of malicious adversaries if and only if the strategy of honestly following
the protocol is in a Nash equilibrium in the game.

Our characterization of two-message OT protocols has several advantages compared to the work
of [2]. First, the game defined in our work is played between two rational players while every game
defined in [2] is “essentially” played by a single rational player. For example, in [2], the privacy of a
protocol is characterized by two games, one for the privacy of player 1 and the other for the privacy
of player 2. In each game, the payoff function of only one player is essentially considered. Since
game-theoretic concepts are of significant meaning in the presence of multiple rational players,
characterization by a single game between two rational players is preferable. Second, we can
characterize both correctness and privacy by a single game while each property is characterized by
different games in [2]. Third, we consider the setting in the presence of malicious adversaries, who
can take any malicious action in the protocol and are stronger than fail-stop adversaries, who are
allowed to take only two actions, “continue” and “stop”, in each round.

Since we can present a single game between two players that characterize the cryptographic
properties of two-message OT, several variations of this game can be considered from a game-
theoretic perspective. For example, we can consider games with more complex payoff functions and
other solution concepts than Nash equilibrium.

The reason for focusing on “two-message” OT is that there exists an indistinguishability-based
definition of privacy for two-message OT in the presence of malicious adversaries [11, 8]. Although
the ideal/real simulation paradigm provides strong and desirable security in the cryptographic
contexts, the indistinguishability-based definition is fit for a game-theoretic framework. In the
indistinguishability-based privacy, a player is asked to predict which of the two inputs of the other
player is used in the protocol. Then the payoff of the player can be explicitly defined in a way such
that she obtains higher payoff if the prediction is correct, and lower payoff otherwise.

2 Models and Definitions

We review some basic definitions to capture OT protocols as well as the solution concepts from
game theory.

A function µ is called negligible if for any polynomial p, there exists a value N ∈ N such that
for all n > N it holds that µ(n) < 1/p(n). We describe some negligible function on n as negl(n).
Let X = {X(a, n)}n∈N,a∈{0,1}∗ and Y = {Y (a, n)}n∈N,a∈{0,1}∗ be distribution ensembles. Then, we

say that X and Y are computationally indistinguishable, denoted X
c≡ Y , if for every non-uniform

probabilistic polynomial time (PPT) distinguisher D, it holds that

|Pr[D(X(n, a)) = 1] − Pr[D(Y (n, a)) = 1]| ≤ negl(n).
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2.1 Cryptographic Security of Oblivious Transfer

An OT protocol π is modeled as a pair of interacting Turing machines. We write π = (Sπ, Rπ) where
Sπ is the sender’s algorithm and Rπ is that of the receiver. We focus on probabilistic polynomial
time algorithm Sπ and deterministic polynomial time algorithm Rπ. The sender’s input is a pair
of two secret messages (x0, x1) and the receiver’s is a secret choice bit c. After the completion of
π, the receiver outputs the message xc wheres the sender outputs nothing. We write this execution
π(Sπ(x0, x1), Rπ(c)) = (λ, xc). To simplify the analysis, we consider machines that are polynomial
in a security parameter, rather than in the length of their inputs. In this paper, n ∈ N represents
the security parameter, and we omit it when it is obvious.

As mentioned in the introduction, we restrict our focus on two message OT protocols.
We define the view and output of protocols formally. These definitions are widely used in the

field of 2-party computation [4, 11].

Definition 2.1 (View). Let π = (Sπ, Rπ) be an OT protocol. The view of the sender during the
execution of π on input pair (xS , xR), when the sender and the receiver use S and R as their
algorithms respectively, is denoted viewπ,S(S(xS), R(xR)) and equals (xS , rS ,mR,mS), where rS

is the random coins of the sender, mR represents the message which the receiver send, and mS

represents the message which the sender send. The view of the receiver is defined analogously.

Definition 2.2 (Output). Let π = (Sπ, Rπ) be an OT protocol. The output of the receiver after
the execution of π on input pair (xS , xR) when the sender and the receiver use S and R as their
algorithms respectively, is denoted outputπ,S(S(xS), R(xR)).

As mentioned in the introduction, our security definitions is based on computational indistin-
guishability. Similar definitions are considered in previous works [11, 8]. There are 3 notions,
privacy for the receiver, privacy for the sender, and correctness. If a two message OT protocol
satisfies all of these notions, then it is called secure in the presence of malicious adversaries.

Definition 2.3 (Cryptographic security for OT protocols). An OT protocol π = (Sπ, Rπ) is said
to be secure protocol if the following holds:

Privacy for the receiver If for every probabilistic polynomial time algorithm S∗ and every pair
of strings (x0, x1) such that |x0| = |x1|, it holds that

viewπ,S(S∗(x0, x1), Rπ(0))
c≡ viewπ,S(S∗(x0, x1), Rπ(1)).

Privacy for the sender If for every deterministic polynomial time algorithm R∗ and every tuple
of strings (x0, x1, x) such that |x0| = |x1| = |x|, there exists a function Choice such that if
Choice(R∗) = 1 then

viewπ,R(Sπ(x0, x1), R∗(c))
c≡ viewπ,R(Sπ(x0, x), R∗(c)),

and if Choice(R∗) = 0 then

viewπ,R(Sπ(x0, x1), R∗(c))
c≡ viewπ,R(Sπ(x, x1), R∗(c)).

Correctness If for every sender’s two input strings x0, x1 ∈ {0, 1}∗ such that |x0| = |x1|, and for
every receiver’s choice bit c, it holds that:

Pr[outputπ,R(Sπ(x0, x1), Rπ(c)) = xc] ≥ 1 − negl(n)
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2.2 Game-Theoretic Concepts

To capture properties and security of OT protocols in the field of game theory, we define the
concepts of games, utility functions, and a solution concept called Nash equilibrium. Our definitions
are similar to the ones previous works [5, 9].

First, we define non-cooperative 2-player games with incomplete information. Since the players
of OT protocols do not know any information about the other player’s input, and they require
the secrecy of their inputs, the implementation of OT protocols can be defined in terms of non-
cooperative 2-player games with incomplete information. Formally, we define such games as follows.

Definition 2.4 (non-cooperative 2-player game with incomplete information). For some N such
that |N | = 2, a 2-player Bayesian game is described as Γ = (N, {Ai, Ti, ui}i∈N ,D), where

• N is a set of players. (Let N = {0, 1} for simplicity.)

• Ai is a set of actions for player i ∈ N . Let A = A0 × A1.

• Ti is a set of types for player i ∈ N . Let T = T0 × T1.

• ui : A × T → R is the utility function for player i ∈ N .

• D is the probability distribution over T . The tuples of the types for each player (t0, t1) happens
with probability pD(t0, t1) which is defined by D. Each player i ∈ N with the type ti believes
that the type t1−i of the other player occur with probability pD(t1−i|ti).

σi : Ti → Ai is called a strategy for player i. Each player’s action could be decided with respect to
its type and its strategy.

If the player i knows the types of the both players, it can calculate its own utility with respect
to any pair of their strategies. For example, when the pair of their types is (t0, t1) and each player
has strategy σ0 and σ1 respectively, the utility of the player i after the completion of the game is
ui(σ0(t0), σ1(t1), t0, t1). We write it as ui(σ0(t0), σ1(t1)) for simplicity.

However, since each player knows its own type, but do not know the other’s, even after the
execution of the protocol, each player can’t calculate its own utility. Thus, we use the following
concept of the expected utility.

Utility functions are the “indicator” when the players select their strategies. Each players
rationally select their strategies based on their utility functions, that is, they select the strategies
with which they can get the highest value of utility. However, in Bayesian games, each party can
not know the other’s types or strategies, and they cannot compute their own value of the utility,
we use the expectation value of the utility.

Definition 2.5 (Expected utility for 2-player Bayesian games). Let Γ = (N, {Ai, Ti, ui}i∈N ,D) be
a 2-player Bayesian game, and let N = {0, 1}. The expected utility of the player 0 with type t0 for
a pair of their strategies (σ0, σ1) on the game Γ is

u0(σ0, σ1) =
∑

t1∈T1

u0(σ0(t0), σ1(t1)) pD(t1−i|ti).

The expected utility of the player 0 is defined analogously.
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In a Bayesian game, rational players are seeking to maximize their expected utility. We use
Bayesian Nash equilibrium as a solution concept of 2-player Bayesian games. To compensate for
the small inevitable imperfections of cryptographic constructs, we take no account of negligible
differences of values.

Definition 2.6 (Nash equilibrium for a 2-player Bayesian game). Let Γ = (N, {Ai, Ti, ui}i∈N ,D)
be a 2-player Bayesian game, and let N = {0, 1}. A pair of strategies (σ0, σ1) is in Nash equilibrium
if for every player i ∈ N and every strategy σ′

i it can take, it holds that

ui(σ0, σ1) ≥ ui(σ′′
0 , σ′′

1) − negl(n)

where σ′′
i = σ′

i and σ′′
1−i = σ1−i.

we use “history” to capture the implementation of protocols in a similar way as in cryptography.
Formally, history is defined as follows.

Definition 2.7 (History). Let π = (Sπ, Rπ) be an OT protocol. The history of the sender dur-
ing the execution of π on the input pair (xS , xR) and the pair of the strategies (S, R) is denoted
historyπ,S(S(xS), R(xR)), and equals (xS , rS , mR,mS), where rS is the random coins of the sender,
mR represents the message which the receiver send, and mS represents the message which the sender
send. The history of the receiver is defined analogously.

3 Game Theoretic Perspective on Oblivious Transfer

3.1 Game Theoretic Security of Oblivious Transfer

OT protocols are done by 2 players, the sender and the receiver, and the possible actions of
each player are defined by the model (e.g. malicious model). Moreover, the types of each player
correspond to its input. To capture OT in the field of game theory, we should define types and
utility functions of the players’, and distribution for games for OT protocols.

We formally define games to capture security of OT protocols. In this game, the sender and the
receiver execute an OT protocol, and after that, they guess the other’s input from 2 candidates.
Thus, both parties choose 2 algorithms, one of which is to execute π and the other is a guess
algorithm, as a strategy to participate in the game. Here, the guess algorithm runs on the party’s
history and 2 candidates of the other’s input.

Definition 3.1 (Games to capture security of OT protocols). Let π = (Sπ, Rπ) be an OT protocol.
On input ((S,GS), (R, GR),D) where

• S is a probabilistic polynomial time strategy of the sender to execute the protocol π,

• R is a deterministic polynomial time strategy of the receiver to execute the protocol π,

• GS and GR are algorithms that output a binary value,

• D = {Dx0,x1,x}x0,x1,x∈{0,1}n,

the game Gameπ runs as follows:

1. Choose Dx0,x1,x from the distribution D.
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2. If the receiver’s algorithm R is equal to Rπ, c is chosen from {0, 1} uniformly at random.
Otherwise, a function Choice computes c from the receiver’s algorithm R.

3. Let X0 = (x0, x1). If c = 0 then let X1 = (x, x1), and if c = 1 then let X1 = (x0, x).

4. Choose a bit b from {0, 1} uniformly at random.

5. Execute π(S(Xb), R(c)). The receiver outputs output(S, R) and finR(S, R). finR(S, R) = 1 if
the receiver receives the sender’s message.

6. Let finS(S, R) = 0 if the sender sends a message to the receiver. Let output(S,R)
be the output of the receiver, fin(S, R) = finS(S,R) ∧ finR(S,R) guessS((S, R), GS) =
GS(historyπ,S(S(Xb), R(c))), and guessR((S,R), GR) = GR(historyπ,R(S(Xb), R(c)), X0, X1).

If a protocol aborts by some input, we assume that the protocol outputs fin(S, R) = 1. We can
easily modify any protocol into this type.

To investigate whether a protocol π has a certain property, we will check whether for an algo-
rithms G such that outputs a bit uniformly at random, a pair of strategies ((Sπ, G), (Rπ, G)) is in
Nash equilibrium for a game with respect to a set of utility functions.

Definition 3.2 (Nash equilibrium). For a pair of utility functions (uS , uR), we say a pair of strate-
gies ((S∗, G∗

S), (R∗, G∗
R)) is in Nash equilibrium if for every pair of strategies ((S, GS), (R, GR)), it

holds that

uS((S∗, G∗
S), (R∗, G∗

R)) ≥ uS((S,GS), (R∗, G∗
R)) − negl(n),

and

uR((S∗, G∗
S), (R∗, G∗

R)) ≥ uR((S∗, G∗
S), (R,GR)) − negl(n).

To capture the security of OT protocols, we say a pair of utility functions. uS and uR represents a
utility function for the sender and the receiver, respectively. Intuitively, each utility function consist
of 3 elements, i.e., a part to protect secrecy, run the protocol correctly, and guess the other’s secret.

Definition 3.3 (Pair of utility functions for security). Let π = (Sπ, Rπ) be an OT protocol. Let
αS, βS, γR, αR, βR, γR be positive constants. The pair of utility functions for security is denoted
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U = (uS , uR). The utility functions on a pair of strategies ((S, GS), (R, GR)), are defined by:

uS((S, GS), (R, GR))

= −αS

(
Pr

x0,x1,x∈D
[guessR((S,R), GR) = b] − 1/2

)
+βS

(
Pr

x0,x1,x∈D
[fin(S, R) = 0 ∨ output(S,R) = xc] − 1

)
+γS

(
Pr

x0,x1,x∈D
[guessS((S, R), GS) = c] − 1/2

)
uR((S, GS), (R,GR))

= −αR

(
Pr

x0,x1,x∈D
[guessS((S,R), GS) = c] − 1/2

)
+βR

(
Pr

x0,x1,x∈D
[fin(S, R) = 0 ∨ output(S, R) = xc] − 1

)
+γR

(
Pr

x0,x1,x∈D
[guessR((S,R), GR) = b] − 1/2

)

Using this game Gameπ and the pair of utility functions U = (uS , uR), we define game-theoretic
security for OT protocols. Intuitively, if both players can get the highest utility when they act
“honestly,” that is, if a pair of strategies which both players act “honestly” is in Nash equilibrium,
then the protocol is called secure. Formally, we define as follows.

Definition 3.4 (Game-theoretic security for OT protocols). Let π = (Sπ, Rπ) be an OT protocol.
We say that π is game-theoretically secure if there exist a function Choice such that the pair of
strategies ((Sπ, G), (Rπ, G)) is in Nash equilibrium for a game Gameπ with respect to the pair of
utility functions U .

Asharov et al. [2] defined game-theoretic security of 2-party computation in the presence of fail-
stop adversaries. We can not discuss the security in the presence of malicious adversaries with their
definition. Since the definition “strategies which both players act honestly is in Nash equilibrium”
assume that the other player acts honestly, and discuss if a player can get the highest utility when
she acts honestly, too. However,with their utility functions, the players have no incentive to act
maliciously since they can not get a higher utility even if they get the other’s secret. Thus, we give
the utility functions an incentive to obtain the other’s secret. For example, whether a protocol π
is private for the receiver in the presence of malicious adversaries depends on the sender’s utility
function. If π is private for the receiver, sender cannot get the receiver’s secret no matter how she
act. Otherwise, there are some actions other than the honest behavior which raise the utility.

We introduce the theorem and the proof in the next section.

3.2 Equivalence of the Two Security Definitions

In this section, we show the equivalence between the cryptographic security we introduced in the
section 2. and the game-theoretic security we newly defined in the previous section.

Here we sketch the outline of the proof. First, to prove that cryptographic security implies
game-theoretic security, assume that there exists a strategy of a player which can reach a higher
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utility than both players act honestly. Thus, at least one term of the utility functions reach a higher
value than honest strategies, and we show that cryptographic notion related to the term does not
hold.

Secondly, to prove that game-theoretic security implies cryptographic security, assume that a
certain cryptographic property does not hold and show that the related term of the utility function
on honest strategies is less than on the default strategies. However, it is insufficient. Because if
the dropped value are compensated by another term, then the honest strategies can be in Nash
equilibrium. We show that any other term can not compensate the dropped value, and conclude
that if a protocol is not cryptographically secure then it is not game-theoretically secure.

Theorem 3.5. Let π = (Sπ, Rπ) be an OT protocol. π is cryptographically secure if and only if π
is game-theoretically secure.

Proof. We begin with the proof that cryptographic security implies game-theoretic security. As-
sume that an OT protocol π = (Sπ, Rπ) is not game-theoretically secure, and prove that nor is π
cryptographically secure.

There exist the following two cases.
First, assume that there exist a sender’s strategy (S∗, G∗

S) and a non-negligible function ε such
that

uS((S∗, G∗
S), (Rπ, G)) > uS((Sπ, G), (Rπ, G)) + ε(n).

Then, as least one of the next formulae holds where ε1, ε2 and ε3 are non-negligible functions:

Pr[guessR((S∗, Rπ), G) = b] < Pr[guessR((Sπ, Rπ), G) = b] − ε1(n) (1)
Pr[fin(S∗, Rπ) = 0 ∨ output(S∗, Rπ) = xc]

> Pr[fin(Sπ, Rπ) = 0 ∨ output(Sπ, Rπ) = xc] + ε2(n) (2)
Pr[guessS((S∗, Rπ), G∗

S) = c] > Pr[guessS((Sπ, Rπ), G) = c] + ε3(n) (3)

When formula 1 holds, we have:

Pr[guessR((Sπ, Rπ), G) = b] > Pr[guessR((S∗, Rπ), G) = b] + ε1(n)
≥ min

S∗
(Pr[guessR((S∗, Rπ), G) = b]) + ε1(n)

= Pr[guessR((Sdefault, Rπ), G) = b] + ε1(n)
= 1/2 + ε1(n),

where Sdefault represents the sender’s strategy not to participate in the protocol. This means that
π is not cryptographically private for the sender.

When formula 2 holds, we have:

Pr[fin(Sπ, Rπ) = 0 ∨ output(Sπ, Rπ) = xc]
< Pr[fin(S∗, Rπ) = 0 ∨ output(S∗, Rπ) = xc] − ε2(n)
≤ max

S∗
(Pr[fin(S∗, Rπ) = 0 ∨ output(S∗, Rπ) = xc]) − ε2(n)

= Pr[fin(Sdefault, Rπ) = 0 ∨ output(Sdefault, Rπ) = xc] − ε2(n)
= 1 − ε2(n).
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This means that π is not cryptographically correct.
And when formula 3 holds, we have:

Pr[guessS((S∗, Rπ), G∗
S) = c] > Pr[guessS((Sπ, Rπ), G) = c] + ε3(n)

≥ min
R∗

(Pr[guessS((Sπ, R∗), G) = c] + ε3(n)

= Pr[guessS((Sπ, Rdefault), G) = c] + ε3(n)
= 1/2 + ε3(n)

This means that π is not cryptographically private for the receiver.
Therefore, π is not cryptographically secure.
Secondly, we assume that there exist a receiver’s strategy (R∗, G∗

R) and a non-negligible function
ε such that

uR((Sπ, G), (R∗, G∗
R)) > uS((Sπ, G), (Rπ, G)) + ε(n).

In this case, we can prove that π is not cryptographically secure in a similar way as the first case.
That is, if π = (Sπ, Rπ) is not game-theoretically secure, then π is not cryptographically secure.
We now turn to the proof in which game-theoretic security implies cryptographic security.

Assuming that an OT protocol π = (Sπ, Rπ) is not cryptographically secure, we prove that nor is
π game-theoretically secure.

First, assume that π is not cryptographically correct. Then, we have

Pr[outputπ,R(Sπ(x0, x1), Rπ(c)) = xc] < 1 − ε(n)

for a non-negligible function ε. Thus,

Pr[fin(Sπ, Rπ) = 0 ∨ output(Sπ, Rπ) = xc]
= Pr[output(Sπ, Rπ) = xc]
< 1 − ε(n)

Let Sstop be a strategy of the sender which stops the protocol after receiving the receiver’s message,
and we have:

• Pr[guessR((Sstop, Rπ), G) = b] = 1/2 ≤ Pr[guessR((Sπ, Rπ), G) = b]

• Pr[fin(Sstop, Rπ) = 0 ∨ output(Sstop, Rπ) = xc]
= Pr[fin(Sstop, Rπ) = 0] = 1 > Pr[output(Sπ, Rπ) = xc] + ε(n)
= Pr[fin(Sπ, Rπ) = 0 ∨ output(Sπ, Rπ) = xc] + ε(n)

• Pr[guessS((Sstop, Rπ), G) = c] = Pr[guessS((Sπ, Rπ), G) = c]

Therefore, we have

uS((Sstop, G), (Rπ, G)) > uS((Sπ, G), (Rπ, G)) + βS ε(n),

which means that the pair ((Sπ, G), (Rπ, G)) is not in Nash equilibrium.
Secondly, we assume that π is cryptographically correct, and π is not cryptographically private

for the receiver. Then, there exist a sender’s strategy (S∗, G∗
S) and a non-negligible function ε such

that
Pr[guessS((S∗, Rπ), G∗

S) = c] > 1/2 + ε(n).
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From this formula, we can say Pr[guessS((Sπ, Rπ), G∗
S) = b] > 1/2 + ε(n), since the sender’s guess

is based on the receiver’s message, and the success probability can reach the highest value any time
after receiving the receiver’s message. Thus, we have Pr[guessS((Sπ, Rπ), G∗

S) = b] − ε(n) > 1/2 =
Pr[guessS((Sπ, Rπ), G) = b] Thus, we have

uS((Sπ, G∗
S), (Rπ, G)) > uR((Sπ, G), (Rπ, G)) + γS ε(n),

which means that the pair ((Sπ, G), (Rπ, G)) is not in Nash equilibrium.
Finally, we assume that π is cryptographically correct, π is cryptographically private for the

receiver, and π is not cryptographically private for the sender. Then, there exist a receiver’s strategy
(R∗, G∗

R) and a non-negligible function ε such that

Pr[guessR((Sπ, R∗), G∗
R) = b] > 1/2 + ε(n).

If R∗ = Rπ then we discuss in a similar way as the second case. Now we assume R∗ 6= Rπ, and we
have:

• Pr[guessS((Sπ, R∗), G) = b] = 1/2 = Pr[guessS((Sπ, Rπ), G) = b]

• Pr[fin(Sπ, R∗) = 0 ∨ output(Sπ, R∗) = xc]
= Pr[fin(Sπ, R∗) = 0] = 1 = Pr[output(Sπ, Rπ) = xc]
= Pr[fin(Sπ, Rπ) = 0 ∨ output(Sπ, Rπ) = xc]

• Pr[guessR((Sπ, R∗), G∗
R) = c] − ε(n) = 1/2 = Pr[guessR((Sπ, Rπ), G) = c] + negl(n)

Therefore, we have

uR((Sπ, G), (R∗, G∗
R)) > uR((Sπ, G), (Rπ, G)) + γR ε(n),

which means that the pair ((Sπ, G), (Rπ, G)) is not in Nash equilibrium.
As we showed that the pair ((Sπ, GS), (Rπ, GR)) is not in Nash equilibrium in every case, π is

not game-theoretically secure.
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