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PAPER
Rational Proofs against Rational Verifiers

Keita INASAWA†, Nonmember and Kenji YASUNAGA†a), Member

SUMMARY Rational proofs, introduced by Azar and Micali (STOC
2012), are a variant of interactive proofs in which the prover is rational,
and may deviate from the protocol for increasing his reward. Guo et al.
(ITCS 2014) demonstrated that rational proofs are relevant to delegation of
computation. By restricting the prover to be computationally bounded, they
presented a one-round delegation scheme with sublinear verification for
functions computable by log-space uniform circuits with logarithmic depth.
In this work, we study rational proofs in which the verifier is also rational,
and may deviate from the protocol for decreasing the prover’s reward. We
construct a three-message delegation scheme with sublinear verification for
functions computable by log-space uniform circuits with polylogarithmic
depth in the random oracle model.
key words: rational proof, delegation of computation, game theory, random
oracle model

1. Introduction

Rational proofs, introduced by Azar andMicali [1], are inter-
active proofs that utilize the rationality of the prover. Specif-
ically, the verifier pays the prover a reward based on the
transcript of the interaction. The protocol for a function f
is designed so that, on a common input x, the receiver can
learn f (x) assuming the prover follows the protocol, and the
best way for the prover to receive a maximal reward is to
follow the protocol. Thus, the verifier can learn f (x) not by
verifying the correctness of the computation by the prover,
but by relying on the rationality of the prover.

Azar and Micali [1] demonstrated the power of ratio-
nal proofs by presenting a one-round rational proof for any
search problem in #P. In subsequent work, Azar and Mi-
cali [2] gave “super-efficient” rational proofs, in which the
verifier runs in logarithmic time, and showed that they cap-
ture the class of constant-depth polynomial-size circuits with
threshold gates. Guo, Hubáček, Rosen, and Vald [3] intro-
duced the notion of rational arguments, where the prover is
restricted to be computationally bounded. They constructed
a one-round rational argument with a polylogarithmic verifi-
cation for the class NC1, of search problems computable by
log-space uniform circuits of logarithmic depth. Recently,
Guo, Hubáček, Rosen, and Vald [4] gave a construction of
a one-round scheme with sublinear verification for all lan-
guages in P.

The work of [2]–[4] can be seen as delegation of com-
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putation in the setting of rational proofs. A small device with
limited computing power (the verifier) delegates a computa-
tion to a cloud server (the prover). On common input x, the
device expects the server to return the correct value f (x) by
paying a reward for the computation to the server. As far
as the server prefers to maximize the reward, the device can
learn the correct value. Compared to the previous setting of
delegation schemes [5]–[7], delegation schemes in rational
proofs achieve polylogarithmic verification.

In existing rational proofs, the rationality is considered
only for the prover. Since the verifier pays a reward to
the prover, it seems natural to consider rational verifiers.
Namely, the small device may try to minimize the reward as
far as the correct value can be received.

1.1 This Work

We study rational proofs in which verifiers also behave ra-
tionally. First, we demonstrate that a rational verifier can
indeed reduce the reward by deviating from the protocol
of [3], which is for functions computable by threshold cir-
cuits. Since the protocol is a public-coin protocol, the verifier
only samples random coins and sends the result to the prover
in each round. The result is used for choosing a child gate
of the current gate from the root to the inputs. We observe
that if the underlying threshold has a gate in which an input
wire is connected with an input to the circuit, the verifier can
reduce the reward by intentionally choosing that wire. Al-
though this is not possible for layered circuits, we show that
even for layered circuits the verifier can reduce the reward
by carefully choosing gates for which the expected reward
becomes smaller.

Next, we define the notion of fully-rational proofs, in
which both the prover and the receiver behave rationally, and
the protocol can be performed between them. In other words,
a protocol for fully-rational proofs assures that following the
protocol description is a Nash equilibrium. The definition is
based on that of rational arguments, introduced in [3]. We
present a fully-rational argument for functions computable
by threshold circuits. The protocol is a variant of the pro-
tocol of [3] for threshold circuits in which random coins
of the verifier are chosen by collective coin-flipping. Al-
though coin-flipping can be implemented with commitment
schemes, they usually require polynomial-time verification,
which is not suitable for delegation of computation. Instead,
we use a commitment scheme in the random oracle model
for achieving polylogarithmic verification. By employing
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such commitment, we construct a three-message protocol
for any threshold circuits, while the round complexity of
the underlying protocol [3] is d for threshold circuits with
depth d. We show that our protocol is a fully-rational proof
with polylogarithmic verification for threshold circuits with
polylogarithmic depth. Compared to the previous delega-
tion schemes in the rational setting, our delegation scheme
guarantees that the delegator (the verifier) has an incentive
to follow the protocol.

1.2 Related Work

As described above, rational proofs were introduced by Azar
and Micali [1]. Rational proofs with logarithmic verifica-
tion were also studied by Azar and Micali [2]. Guo et al. [3]
introduced rational arguments, and showed a one-round pro-
tocol with polylogarithmic verification for the class NC1.
Later, Guo et al. [4] presented a one-round rational argu-
ment with polylogarithmic verification for all languages in
P. Campanelli and Gennaro [8] studied the composability
of rational proofs and presented a sequentially composable
rational proof for arithmetic circuits. Chen, McCauley, and
Singh [9] studied rational proofs that allowsmultiple provers,
and showed that multiple rational provers are strictly more
powerful than one.

2. Preliminaries

For n ∈ N, let [n] = {1, 2, . . . , n}. A function ε : N → R≥0
is said to be negligible if for any polynomial p(·), ε(n) <
p−1(n) for every sufficiently large n ∈ N. We denote by
negl(·) a negligible function.

2.1 Rational Proofs

In rational proofs, the verifier pays the prover a reward ac-
cording to the transcript of the communication. Protocols are
designed so that the correct evaluation f (x) can be obtained
from the transcript that maximizes the expected reward. For
a pair of interactive Turing machines P and V , we denote
by (P,V )(x) the random variable representing the transcript
between P and V when interacting on common input x. Let
Out((P,V )(x)) denote the output of V after interacting with
P on common input x. For a reward function Rew that maps
transcripts to real values, we denote by Rew((P,V )(x)) the
reward calculated by V in the interaction with P on input x.

Definition 1 (Rational Proof). A function f : {0, 1}∗ →
{0, 1}∗ admits a rational proof if there exists a protocol (P,V )
and a reward function Rew : {0, 1}∗ → R≥0 such that for
any x ∈ {0, 1}∗,

1. Pr[Out((P,V )(x)) = f (x)] = 1.
2. For any prover P∗,

E[Rew((P∗,V )(x))] ≤ E[Rew((P,V )(x))].

3. For any prover P∗, if there is a polynomial p(·) such

that

Pr[Out((P∗,V )(x)) , f (x)] ≥ p−1( |x |),

then there is a polynomial q(·) such that

E[Rew((P∗,V )(x))] ≤ E[Rew((P,V )(x))] − q−1( |x |).

A public-coin protocol is one in which every message
fromV consists of all random coins tossed byV in the round.

2.2 Scoring Rules

The main technical tools employed in the constructions of
rational proofs in [1]–[3] are scoring rules, which can be used
for forecasters to report the true weather forecast. A scoring
rule assigns a real value S(Q, ω) to a probability distribution
Q and an event ω drawn from the actual distribution P. The
expected value is maximized if the forecaster reports the true
distribution P as a forecast.

Definition 2 (Strictly Proper Scoring Rule). Let P be a prob-
ability distribution over a probability space Ω. We say that
a function S : {0, 1}∗ → R is a strictly proper scoring rule
with respect to P if for every probability distribution Q , P
over Ω,et∑

ω∈Ω

P(ω)S(P, ω) >
∑
ω∈Ω

P(ω)S(Q, ω).

The study of scoring rules was initiated by Brier [10].
A variant of the scoring rule given in [10] is a function

SB (P, ω) = 2P(ω) −
∑
ω∈Ω

P(ω)2 − 1.

2.3 Protocol of Guo et al. [3]

We review the rational proof proposed by Guo et al. [3] for
functions computable by log-space uniform threshold cir-
cuits. The protocol consists of rational proofs for threshold
gates. First, a rational proof for the output gate is performed,
which begins with sending the output value to the verifier.
Since the reward is calculated by randomly choosing an input
wire to the gate, the verifier chooses a child gate uniformly
at random. Then, a rational proof for the chosen gate will
be performed until an input wire to the circuit is chosen as a
child.

Let f : {0, 1}∗ → {0, 1} be a function computable by
a threshold circuit of depth d = d(n) on input x ∈ {0, 1}n.
The protocol (P,V ) is specified as follows.

1. P: Evaluate the circuit on x ∈ {0, 1}n and send the
output value y1 to V .

2. V : Set γ = 1/(1 + 2m2
0), where m0 is the largest fan-in

over all gates in the circuit.† Identify the root gate g1
and invoke the procedure Round(1, g1, y1),
†We can set m0 to be any number larger than the maximal

fan-in.
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where Round(i, gi, yi) for 1 ≤ i ≤ d is defined as follows.

1. V : Choose a child gi+1 of gi uniformly at random.

• If gi+1 is a threshold gate, ask P for the output
value of gi+1.

• Otherwise, if gi+1 is an input to the circuit
of value b ∈ {0, 1}, then pay P the reward
γd−i/2 · Brier(gi, yi) and halt the protocol, where
Brier(g, y) is defined to be




2βy − (1 − βy )2 − β2
y + 1 if b = 1,

2(1 − βy ) − (1 − βy )2 − β2
y + 1 otherwise,

β1 = t/m, β0 = (t − 1)/m, and t and m are the
threshold and the fan-in of gate g, respectively.

2. P: Send the output value yi+1 of the gate gi+1 to V .
3. V : Pay P the reward γd−i/2 · Brier(gi, yi) for b = yi+1

and invoke Round(i + 1, gi+1, yi+1).

In the protocol, Brier’s scoring rule is employed such
that the prover can choose either β1 and β0 as a fore-
cast. For each forecast, the true distribution is β =
#{input wires with value 1}/m. Brier’s rule has the prop-
erty that the expected score gets higher by answering y = 1
if β ≥ t/m, and y = 0 if β < t/m. Thus, the prover has an
incentive to answer the true output value for each gate. The
scores are less discounted on the consecutive levels from the
root to the input in order to prevent the prover from deviating
from the protocol at the later stages.

The following theorem holds [3].

Theorem 1 ([3]). If f : {0, 1}∗ → {0, 1} is computable by
a family of O(log S(n))-space uniform threshold circuits of
size S(n) and depth d(n), then f admits a rational proof
such that (1) a protocol (P,V ) is a d(n)-round public-coin
protocol; (2) the communication complexity of P is d(n); (3)
the running time of V is O(d(n) · poly(log S(n))).

3. Rational Proofs against Rational Verifiers

In rational proofs, the verifier is assumed to follow the pro-
tocol honestly. However, the verifier needs to pay a reward
to the prover by performing the protocol. It seems natural to
consider rational verifiers who try to reduce the amount of
rewards paid to the prover.

3.1 Behavior of Rational Verifiers

We show that rational verifiers can indeed reduce the ex-
pected reward by deviating from the protocol of [3], which
is presented in Sect. 2.3. Note that the verifier can choose
next child at each gate in the protocol, where the verifier is
supposed to choose uniformly at random.

One trivial example is to choose an input wire to the
circuit when other wires are connected to other gates. Since
the total score is a sum of scores of chosen gates, the total
gets lower if the verifier intentionally chooses an input wire

Fig. 1 A circuit with three gates.

so early.
Although the first example can be avoided by con-

sidering layered circuits, there is another less trivial ex-
ample. Consider a gate g with threshold t and fan-in
m. Let (x1, . . . , xm) ∈ {0, 1}m be the input to g, and
X = Prr ∈[m][xr = 1]. The expected reward when the prover
answers y as the output value for g is

E[Brier(g, y)]
= X (2βy − (1 − βy )2 − β2

y + 1)

+ (1 − X )(2(1 − βy ) − (1 − βy )2 − β2
y + 1)

= 2(2βy − 1)X + 2 − 2β2
y .

Thus, the expected reward is minimized by choosing larger
X if βy < 1/2, and choosing smaller X if βy ≥ 1/2.

For a concrete example, let consider a circuit with three
gates g0, g1, g2 as in Fig. 1. Suppose that thresholds of g1
and g2 are 2 and 1, respectively, and that all the input values
to g1 are 0 and those to g2 are 1. Then, the left gate g1 has
the values β0 = 1/4 and X = 0, and the right gate g2 has
the values β1 = 1/4 and X = 1. Thus, the expected reward
becomes smaller if the verifier chooses g2 since we know
that if βy < 1/2, the reward is minimized by choosing larger
X . Indeed, the reward obtained by choosing g2 is 7/8, while
that obtained by g1 is 15/8.

As illustrated in the above, the verifier can deviate from
the protocol so that the expected reward will be smaller than
that obtained by following the protocol.

3.2 Definition

We introduce the notion of fully-rational proof, in which the
protocol can be performed between a rational prover and a
rational verifier. Intuitively, it is a rational proof in which
the verifier cannot decrease the reward by deviating from the
protocol.

The definition is based on the notion of rational ar-
guments, introduced in [3], that are a variant of rational
proofs in which the prover is restricted to be computation-
ally bounded.

Definition 3 (Fully-Rational Argument). A function f :



INASAWA and YASUNAGA: RATIONAL PROOFS AGAINST RATIONAL VERIFIERS
2395

{0, 1}∗ → {0, 1}∗ admits a fully-rational argument if there ex-
ists a protocol (P,V ) and a reward function Rew : {0, 1}∗ →
R≥0 such that for any x ∈ {0, 1}∗,

1. Pr[Out((P,V )(x)) = f (x)] = 1.
2. For any P∗ of size poly(|x |),

E[Rew((P∗,V )(x))] ≤ E[Rew((P,V )(x))]+negl(|x |).

3. For any P∗ of size poly( |x |), if there is a polynomial
p(·) such that

Pr[Out((P∗,V )(x)) , f (x)] ≥ p−1(|x |),

then there is a polynomial q(·) such that

E[Rew((P∗,V )(x))] ≤ E[Rew((P,V )(x))] − q−1(|x |).

4. For any V ∗ of size poly(|x |),

E[Rew((P,V ∗)(x))] ≥ E[Rew((P,V )(x))] − negl( |x |).

The second and forth conditions imply that the strategy
of following the protocol is a computational Nash equilib-
rium. In addition, the third condition partially assures a
computational strict Nash equilibrium, since it guarantees
that any deviation by the prover that results in an incorrect
answer for f (x) must decrease the reward by a noticeable
amount.

4. Our Protocol

We present a protocol for a fully-rational proof based on
the protocol of Guo et al. [3]. The problem of rational
verifiers in the protocol of [3] is that they can choose next
child for minimizing the reward. To prevent such devia-
tion, we use a collective coin-flipping to choose a next child.
A coin-flipping protocol can be constructed with a com-
mitment scheme. However, usual commitment schemes do
not allow poly(log n)-time verification. In order to achieve
poly(log n)-time computation for verifiers, we employ a
commitment scheme in the random oracle model. Further-
more, the commitment in the random oracle model allows us
to achieve a three-message protocol for any threshold circuit,
while the round complexity of the underlying protocol [3] is
d for threshold circuits with depth d.

Let f : {0, 1}∗ → {0, 1} be a function computable by a
threshold circuit of depth d = d(n) on input x ∈ {0, 1}n. For
simplicity, we assume that every fan-in of gates in the circuit
is m = m(n). We define our protocol (P,V ) using a random
oracle H : [M]→ [M], where M = M (n) is a multiple of m
satisfying ω(log n) ≤ log M (n) ≤ poly(log n).

1. P : Choose a ∈ [M] uniformly at random and compute
ad−i = H i (a) for 0 ≤ i ≤ d−1 by querying the random
oracle. Evaluate the circuit on x ∈ {0, 1}n and send the
output value y1 and Hd (a) to V .

2. V : Given y1 and h̃, set γ = 1/(1 + 2m2) and choose
b1, . . . , bd ∈ [M] uniformly at random and send them
to P.

3. P : For 1 ≤ i ≤ d, do the following:

• Set ri = ai + bi mod m and choose the ri-th child
gi+1 of the gate gi , where g1 is the root gate.

– If gi+1 is a threshold gate, set yi+1 to be the
output value of gi+1 and go to next i.

– Otherwise, if gi+1 is an input to the circuit of
value b ∈ {0, 1}, then set yi+1 = b and yj = ⊥
for all i+2 ≤ j ≤ d. Send a, y2, . . . , yd to V .

4. V : Given a, y2, . . . , yd from P, compute ad−i = H i (a)
for 0 ≤ i ≤ d − 1.

• If Hd (a) , h̃, then pay nothing to P and halt the
protocol.

• Otherwise, for 1 ≤ i ≤ d, set ri = ai + bi mod m,
identify the ri-th child gi+1 of the gate gi , and
set ψi = γ

d−i/2 · Brier(gi, yi) for b = yi+1, where
Brier(g, y) is the same as described in Sect. 2.3 and
ψi = 0 if yi+1 = ⊥. Pay P the reward

∑
j∈[d] ψ j

and halt the protocol.

In the above protocol, we use H (ai) as a commitment
of the value ai , which is defined to be ai = Hd−i (a) and is
uniformly distributed. Since Hd (a) can work as a commit-
ment of the values a1, . . . , ad , the prover cannot change the
values a1, . . . , ad after sending Hd (a). If the commitment
verification fails, the verifier pay nothing to the prover. Since
Hd (a) reveals no information about a1, . . . , ad , the verifier
cannot control the values ri = ai + bi mod m, which are uni-
formly distributed. We use these values r1, . . . , rd to choose
next children from the root.

Theorem 2. If f : {0, 1}∗ → {0, 1} is computable by a
family of O(log S(n))-space uniform threshold circuits of
size S(n) and depth d(n), then f admits a fully-rational ar-
gument such that (1) a protocol (P,V ) is a three-message
public-coin protocol; (2) the communication complexity
of P is 2 log M (n) + d(n); (3) the running time of V is
O(d(n)(log M (n) + poly(log S(n)))).

Proof. Our protocol described above is a three-message
public-coin protocol. Let S = S(n), M = M (n), and
d = d(n). It is not difficult to see that the communication
complexity of P is 2 log M + d. In the original protocol [3],
the reward is computed in time poly(log n). Thus, the re-
ward in our protocol is also computed in time poly(log n).
In addition, the verifier needs to sample d instances from
[M], add elements in [M] d times, and identify children d
times. Since the circuit is O(log S)-space uniform, identify-
ing a child can be computed in time poly(log S). Hence, the
running time of the verifier is O(d(log M + poly(log S))).

To prove the four properties of fully-rational argument,
it is helpful to define two intermediate protocols (P1,V1) and
(P2,V2). The protocol (P1,V1) is a variant of the protocol
of [3] in which, a sum of two random values ri = ai + bi
(mod m) is used for choosing a random child, and the prover
sends a commitment H (ai) of ai before the receiver sends
bi . The following is a formal description of (P1,V1), where
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the differences are highlighted with underlines.

(1) Protocol (P1,V1) :

1. P1: Choose a1 ∈ [M] uniformly at random. Evaluate
the circuit on x ∈ {0, 1}n and send the output value
y1 and H (a1) to V1.

2. V1: Given y1 and h̃1, set γ = 1/(1 + 2m2). Identify the
root gate g1 and invoke the procedureRound1(1, g1, y1),

where Round1(i, gi, yi) for 1 ≤ i ≤ d is defined as follows.

1. V1: Choose bi ∈ [M] uniformly at random, and send bi
to P1.

2. P1: Set ri = ai + bi mod m, and choose the ri-th child
gi+1 of gi . If gi+1 is a threshold gate, set yi+1 to be the
output value of gi+1. Otherwise set yi+1 = ⊥. Send ai ,
H (ai+1), and yi+1 to V1.

3. V1: Given ãi , h̃i+1, and yi+1, if H (ãi) , h̃i , pay P1
nothing and halt the protocol. Otherwise, set ri = ãi+
bi mod m, and choose the ri-th child gi+1 of gi .

• If gi+1 is a threshold gate, pay P1 the reward
γd−i/2 · Brier(gi, yi) for b = yi+1, and invoke
Round1(i + 1, gi+1, yi+1).

• Otherwise, if gi+1 is an input to the circuit of
value b ∈ {0, 1}, then pay P1 the reward γd−i/2 ·
Brier(gi, yi) and halt the protocol.

We show that the protocol (P1,V1) satisfies the four
properties of fully-rational arguments. The first property of
completeness immediately follows from the protocol. Let
P∗ be a prover of size poly(|x |). It is not difficult to see that
as far as ri’s are uniformly distributed, the expected reward
is the same as that in the original protocol of [3]. The only
way to increase the reward by P∗ is to choose a′i ∈ [M] sat-
isfying H (ai) = H (a′i ) after sending a commitment H (ai).
Since M is of size 2ω(log |x |) and H : [M] → [M] is a
random oracle, it is difficult for P∗ to find a collision a′i
except with a negligible probability. Thus, we have that
E[Rew((P∗,V )(x))] ≤ E[Rew((P,V )(x))] + negl( |x |). To
prove the third property, let consider P∗ of size poly(|x |) such
that Pr[Out((P∗,V )(x)) , f (x)] ≥ p−1(|x |) for some poly-
nomial p(·). This is the case that P∗ sends an incorrect value
y1 at the first step. If so, as in the above analysis, P∗ can-
not increase the reward by more than a negligible amount.
It follows from the third property of a rational proof for
the original protocol that there is a polynomial q(·) such
that E[Rew((P∗,V )(x))] ≤ E[Rew((P,V )(x))] − q−1(|x |).
Finally, let consider V ∗ of size poly( |x |). As far as
ri’s are uniformly distributed, V ∗ cannot decrease the ex-
pected reward. Thus, to decrease the reward, V ∗ needs to
learn the information about ai from H (ai) before choos-
ing bi . However, since H : [M] → [M] is a ran-
dom oracle with M = 2ω(log |x |) , the information can-
not be learned by any polynomial-time computation ex-
cept with a negligible probability. Therefore, we have that
E[Rew((P,V ∗)(x))] ≥ E[Rew((P,V )(x))] − negl(|x |).

Next, we define a protocol (P2,V2) that is a variant of

(P1,V1) in which H (ai+1) is used as ai , and thus the prover
only needs to sample a random element a and set ad−i =

H i (a). The following is a formal descriptions of (P2,V2),
where the differences are highlighted with underlines.

(2) Protocol (P2,V2) :

1. P2: Choose a ∈ [M] uniformly at random
and compute ad−i = H i (a) for 0 ≤ i ≤ d − 1. Evalu-
ate the circuit on x ∈ {0, 1}n and send the output value
y1 and H (a1) to V2.

2. V2: Given y1 and h̃1, set γ = 1/(1 + 2m2). Identify the
root gate g1 and invoke the procedureRound2(1, g1, y1),

where Round2(i, gi, yi) for 1 ≤ i ≤ d is defined as follows.

1. V2: Choose bi ∈ [M] uniformly at random, and send bi
to P2.

2. P2: Set ri = ai + bi mod m, and choose the ri-th child
gi+1 of gi . If gi+1 is a threshold gate, set yi+1 to be the
output value of gi+1. Otherwise set yi+1 = ⊥. Send ai
(which is equal to H (ai+1)) and yi+1 to V2.

3. V2: Given ãi and yi+1, if H (ãi) , h̃i , pay P2 nothing
and halt the protocol. Otherwise, set ri = ãi + bi mod
m, and choose the ri-th child gi+1 of gi .

• If gi+1 is a threshold gate, pay P2 the reward
γd−i/2 · Brier(gi, yi) for b = yi+1, and invoke
Round2(i + 1, gi+1, yi+1).

• Otherwise, if gi+1 is an input to the circuit of
value b ∈ {0, 1}, then pay P2 the reward γd−i/2 ·
Brier(gi, yi) and halt the protocol.

This protocol also satisfies the four properties of fully-
rational arguments. The only difference from (P1,V1) is the
way of choosing ai’s. Since ai is chosen as H (ai+1) and H
is a random oracle, ai is uniformly distributed except with
a negligible probability. Thus, all the properties of fully-
rational arguments are satisfied.

Finally, we show that our protocol (P,V ) satisfies the
properties of fully-rational arguments based on the fact that
(P2,V2) satisfies them. In the protocol (P,V ), the prover
does not send H i (ai+1) for 1 ≤ i ≤ d − 1 before sending
a = ad at the final step of P. As in the previous analysis, a
polynomial-size P∗ cannot find any collision in H exceptwith
a negligible probability. Thus, P∗ cannot increase the reward
more than a negligible amount in our protocol, which implies
the second and the third properties. Since Hd (a) does not
reveal any information about a, H (a), . . . , Hd−1(a) for any
polynomial-sizeV ∗ except with a negligible probability, such
V ∗ cannot decrease the reward by more than a negligible
amount, which implies the forth property. Therefore, the
statement follows. �

Theorem 2 implies that our protocol achieves
poly(log n)-time verification for functions computable by
polynomial-size threshold circuits with poly(log n) depth.
Although we have assumed that every fan-in of gates in the
circuit was m, the restriction can be removed. It is well-
known that threshold gates can be simulated with bounded
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fan-in AND and OR gates, and bounded fan-in AND and OR
gates can be simulated with bounded fan-in threshold gates.
Thus, any polynomial-size threshold circuit can be simu-
lated with a polynomial-size threshold circuit consisting of
bounded fan-in threshold gates.

5. Conclusions

We have shown that the verifier in rational proofs may have
an incentive to deviate from the protocol for decreasing the
reward for the prover. The notion of fully-rational proof is
defined so that the strategy of following the protocol is a
Nash equilibrium for rational prover and verifier. We have
presented a three-message fully-rational proofwith polyloga-
rithmic verification for functions computable by circuits with
polylogarithmic depth in the random oracle model. One pos-
sible future work is to construct a fully-rational proof with
sublinear verification in the standard model. Another one is
to reduce the round complexity of our protocol, or to prove
the optimality of three-message protocols.
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