
Error-Correcting Codes against
Chosen-Codeword Attacks

Kenji Yasunaga

Kanazawa University, Kakuma-machi Kanazawa, Japan
yasunaga@se.kanazawa-u.ac.jp

Abstract. We study the problem of error correction for computationally
bounded channels under chosen-codeword attacks (CCA). In the CCA
setting, the channel can introduce a p-fraction of errors by accessing to
the encoding and the decoding oracles. Since the unique decoding is not
possible for p ≥ 1/4, we consider list-decodable codes. We present an
optimal-rate coding scheme by assuming the existence of one-way func-
tions. The construction is based on the list-decodable code of Guruswami
and Smith (2010) for computationally bounded channels.

1 Introduction

The problem of error correction for computationally bounded channels was first
studied by Lipton [9]. He reduced the problem of error correction in the secret-
key (or shared randomness) setting to the problem of error correction in binary
symmetric channels (BSC). In his scheme, a message m is encoded into c =
π−1(C(m))⊕µ, where C is an error correcting code for BSC, and π and µ are a
random bit permutation and a random mask, respectively, which are privately
shared between the sender and the receiver. When an error e was introduced,
on input y = c ⊕ e, the decoder sends π(y ⊕ µ) = C(m) ⊕ π(e) to the decoder
of C. Since π(e) is like a random error in BSC, C can correct it. The scheme
can achieve an optimal rate in the secret-key setting since there are several
optimal-rate (capacity-achieving) schemes for BSC [2, 1]. Lipton showed that,
by assuming a pseudorandom generator exists, the length of the secret key can
be reduced to n−d for any constant d > 0, where n is the length of c.

Lipton’s scheme beautifully reduced the error correction in the secret-key
setting to that in BSC. However, the scheme only achieves one-time security.
Thus, in order to send k messages reliably, we need to generate k secret keys.
The situation is very similar to that of the one-time pad for secret-key encryption.

In modern cryptography, more powerful attacks are considered for encryption
schemes, for which the one-time pad is not secure. In a chosen-plaintext attack
(CPA), an adversary is allowed to access to the encryption oracle. In addition,
the adversary can access to the decryption oracle in a chosen-ciphertext attack
(CCA). The CCA security is widely accepted as the standard security notion for
encryption schemes.

In this work, we introduce an analogous notion to chosen-ciphertext attack
security, called chosen-codeword attack (CCA) security, for the problem of error

correction. Intuitively, a coding scheme is said to be CCA secure if for any
probabilistic polynomial-time (PPT) adversarial channel, the scheme can correct
any error introduced by the channel even if it can access to both the encoding and
the decoding oracles. We assume that adversarial channels can introduce at most
p-fraction errors, where p ∈ (0, 1/2) is called the error rate. The CCA security of
the coding scheme captures strong attack scenarios, in which adversarial channels
can introduce errors by using various information obtained via the encoding and
decoding functions.

We present an optimal-rate coding scheme that is CCA secure in the secret-
key setting. The construction is based on the framework of Guruswami and
Smith [6], which provides a one-time secure coding scheme for computationally
bounded channels.

It is first observed that, in order to tolerate attacks using the encoding ora-
cle, it is necessary to relax the goal of decoding to list decoding, where the de-
coder outputs a polynomial-size list containing an original message. As discussed
in [10], if an adversarial channel can obtain polynomially-many valid codewords,
the channel can cause a non-negligible error for unique decoding when the error
rate p > 1/4. Thus, we aim to construct a list-decodable code with optimal rate
1−H(p)− ε for any constant ε, where p is the error rate and H(·) is the binary
entropy function.

Guruswami and Smith [6] showed an optimal-rate list-decodable code for
computationally bounded channels. Their scheme does not assume the existence
of a shared secret key. However, they only presented a probabilistic construction
that is not fully explicit. To implement their scheme, the sender and the receiver
need to share the random coins privately to the channel. The only probabilistic
part of [6] is a primitive called a pseudorandom code, which is a list-decodable
code whose codewords themselves are pseudorandom. We would like to construct
an explicit scheme that is secure against polynomial-time channels. Since the
scheme of [6] can been seen as an explicit scheme in the secret-key setting. we
aim to construct an explicit secret-key code that is CCA secure for polynomial-
time adversaries.

Our scheme is built with several cryptographic primitive including pseudo-
random generators, pseudorandom functions, and secure message authentication
codes. All the three primitives can be constructed by assuming the existence of
one-way functions [3, 4, 7].

1.1 Ideas of the Construction

Our approach is to enhance the error correctability of the scheme of [6] to have
CCA security. In order to prove CCA security, we need to show that the responses
of the encoding/decoding oracles are useless for an adversarial channel. It is
sufficient to show that the oracle responses can be simulated without using the
secret key.

We observe that the codewords of the scheme [5] are pseudorandom. Thus,
simulation of the encoding oracle can be done by preparing a random string
for every oracle query. When an adversarial channel makes the i-th query mi

to the encoding oracle, the simulator responds with a random string ci. By
pseudorandomness of codewords, the simulation can be done successfully.

To achieve CCA security, we need to simulate the decoding oracle. As in
achieving CCA security for encryption schemes, we employ a message authen-
tication code (MAC). To encode a message m, we first generate a MAC tag
τ of m, and feed (m, τ) to the encoder. By this modification, the adversarial
channel cannot generate a valid codeword without querying the encoding oracle.
Otherwise, such a channel can be used for breaking the security of MAC. As
in simulating the encoding oracle, we use a list of pairs (mi, ci) for every oracle
query mi to the encoding oracle, where ci is a random string. On querying y to
the decoding oracle, the simulator responds with the list of all mi for which the
corresponding codeword ci is within a distance ⌈pn⌉ from y. Since the encoding
of [6] is inherently probabilistic, it seems necessary to check exponentially-many
possible codewords of mi for each i. However, this problem can be resolved by
making the encoding deterministic, which can be done by using a pseudoran-
dom function F . In encoding a message m, the value Fsk(m) is used as random
coins for the encoder, where sk is the secret key of F shared between the sender
and the receiver. As long as sk is secret, Fsk(m) looks random. Since there is a
unique codeword for each message mi, the responses of the decoding oracle can
be simulated in the above way.

We employ several cryptographic primitives, and hence our construction is
relatively simple compared to the original construction of [6]. We could avoid
using a randomness-efficient sampler, a generator of t-wise independent permu-
tations, a generator of t-wise independent strings, and a code correcting t-wise
independent errors. Instead, we use standard cryptographic primitives, a pseu-
dorandom generator, a pseudorandom function, and a message authentication
code.

1.2 Related Work

Lipton [9] introduced the notion of computationally bounded channels, and pro-
posed an optimal-rate scheme that has one-time security in the secret-key setting.

Langberg [8] studied secret-key coding schemes for computationally un-
bounded channels, and showed the existence of an optimal-rate coding scheme
with optimal secret-key size.

Micali et al. [10, 11] proposed a coding scheme in the public-key setting in
which the encoder has a secret key of digital signature and the decoder has the
corresponding verification key. They considered an attack scenario in which an
adversarial channel can observe several valid codewords. However, their security
model is essentially different from the model in which the channel can access to
the encoding oracle. In the model of [10, 11], the sender can use the time stamp
to encode messages. Since the channel is not allowed to access to the signing
oracle, it cannot obtain multiple codewords with the same time stamp. Indeed,
the use of time stamps allows to circumvent the impossibility of unique decoding.

Guruswami and Smith [6] studied coding schemes for computationally
bounded channels where the time complexity is a prior bounded polynomial.

They presented a probabilistic construction of an optimal-rate coding scheme in
which neither a secret key nor a public key is used.

2 Preliminaries

2.1 Notations

For n ∈ N, we write [n] = {1, 2, . . . , n}. For a finite set Σ and an integer n ∈ N,
x ∈ Σn is called a vector or string over the alphabet Σ. A function f : N → N
is called negligible in n if for every positive polynomial p(·), there exists n0 ∈ N
such that for every integer n > n0, f(n) < 1/p(n). We write negl(·) as a negligible
function. The uniform distribution over {0, 1}n is denoted by Un.

2.2 Error-Correcting Codes

The Hamming distance between two vectors x, y ∈ Σn is defined to be ∆(x, y) =
|{i ∈ [n] : xi ̸= yi}|, where x = (x1, . . . , xn) and y = (y1, . . . , yn). The Hamming
weight of x ∈ Σn is wt(x) = |{i ∈ [n] : xi ̸= 0}|. For a finite set Σ and
R ∈ (0, 1], a code over an alphabet Σ with an information rate R is a mapping
C : Σk → Σn, where k/n = R. We refer to k and n as the message length and
the code length, respectively. An encoded message C(x) is called a codeword. We
also refer to C as the set {C(x) : x ∈ Σk} of the codewords.

A code C over Σ is called (δ, L)-list decodable if for any y ∈ Σn, there is at
most ℓ ≤ L codewords c1, . . . , cℓ ∈ C such that ∆(y, ci) ≤ δn for all i ∈ [ℓ].

3 Formal Model

We define a coding scheme that is parameterized by a security parameter n,
which is equal to the code length.

Definition 1 (Secret-Key Coding Scheme). A secret-key coding scheme Π
consists of three polynomial-time algorithms Setup, Enc, Dec, a finite alphabet
Σ, and an information rate R. For every sufficiently large k ∈ N, let n = ⌊k/R⌋.
On input 1n, Setup outputs the secret key sk. On input 1n, sk, and a message
m ∈ Σk, Enc outputs a codeword c ∈ Σn. On input 1n, pk, and a string y ∈ Σn,
Dec outputs a message m ∈ Σk or ⊥. The input of the parameter 1n to Enc
and Dec may be omitted for simplicity. It is required that for every k and key
sk generated by Setup(1n), it holds that Pr[Decsk(Encsk(m)) = m] = 1 for any
m ∈ {0, 1}k.

An adversarial channel W consists of two algorithms W1 and W2. To define
the error correctability, we define the following game for a coding scheme over Σ
of rate R. First, the setup algorithm generates the secret key. Then, W1 chooses
a challenge message m∗ ∈ Σk. After that, on input the codeword c∗ of the chosen
message, W2 outputs y ∈ Σn, where n = ⌊k/R⌋. A channel is called p-error if

W2, on input c∗, always outputs y satisfying ∆(c∗, y) ≤ ⌈pn⌉. We say that W is
probabilistic polynomial-time (PPT) if both W1 and W2 run in time polynomial
in n.

We define the security against chosen-codeword attack (CCA security). In
this security, the encoding oracle Encsk(·) and the decoding oracle Decsk(·) are
available to an adversarial channel. Since the unique decoding is not possible if
the channel can access to the encoding oracle and the error rate p > 1/4, we say
that a coding scheme is CCA secure if the scheme can output a polynomial-size
list that contains the challenge message.

Definition 2 (CCA Security). Let Π = (Setup,Enc,Dec, Σ,R) be a secret-
key coding scheme of rate R, and W = (W1,W2) an adversarial channel. For
k ∈ N, we define the advantages of W as

AdvCCA
W,Π (k)

= Pr

m∗ /∈ L :
sk ← Setup(1n), (m∗, st)←W

Encsk(·),Decsk(·)
1 (1n),

c∗ ← Encsk(m
∗), y∗ ←W

Encsk(·),Decsk(·)
2 (st, c∗),

L← Decsk(y
∗)

 ,

where n = ⌊k/R⌋. We say Π is (p, T, ε)-CCA secure if AdvCCA
W,Π (k) ≤ ε(n) for

every p-error probabilistic T (n)-time channel W .

4 Our Construction

4.1 Overview

Our construction is based on the framework of Guruswami and Smith [6].
A message m is encoded as π−1(C(m)) ⊕ µ, where C is a random-error

correcting code, π is a random bit permutation, and µ is a random mask. This
part is called a payload codeword, and is divided into ℓ−κ blocks C1, . . . , Cℓ−κ.
The seeds sπ and sµ for π and µ should be shared between the sender and
the receiver. We will not include sπ and sµ in the secret key. Instead, we will
send them privately by jamming them into the payload codeword. The control
information s is encoded by a Reed-Solomon code, so that it will be recovered by
a (generalized) list decoding. Let (f(α1), . . . , f(ακ)) be the encoded information,
where each αi is an element of a finite field, and f is the polynomial corresponding
to the control information s. Then, each pair of element (αi, f(αi)) is encoded
into a block Di by a pseudorandom code (PRC). The resulting blocks D1, . . . , Dκ

are randomly mixed into the payload blocks (C1, . . . , Cℓ−κ). The information V
of the positions of the control-information blocks is also included into the control
information s. By the property of PRC, each block Ci is pseudorandom. Since
the payload codeword is masked by a random string µ, the resulting codeword
is also pseudorandom.

In decoding, first, the list decoding of the pseudorandom code is applied to
each block. Then, a list of pairs (αj , βjh)h is recovered for each j. By applying the

(generalized) list decoding of the Reed-Solomon code to the list {(αj , βjh)h}j , we
can recover a list of control information. For each candidate control information
s, by recovering π, µ, V from s, the payload part is decoded with the decoder of
the random-error correcting code.

As described in Section 1.1, we use pseudorandom functions (PRF) to make
the encoding deterministic. The first PRF is used for generating the control
information from a message m. The second PRF is for sampling random coins
for the pseudorandom code. Also, as explained in Section 1.1, we add a MAC
tag to the message m. The secret key consists of the two keys of PRFs and the
secret keys of MAC and PRC.

4.2 Ingredients

We use the following tools in our construction:

– A random p-error correcting code REC : {0, 1}R′n → {0, 1}n of rate R′ =
1−H(p)−ε′ for any positive constant ε′. It is required that for every message
m ∈ {0, 1}R′n and error vector e ∈ {0, 1}n of Hamming weight at most ⌈pn⌉,
the decoder of REC, on input REC(m) ⊕ π(e), outputs m with probability
at least 1 − negl(n), where π is a random bit permutation. Any capacity-
achieving code in binary symmetric channels with cross-over probability p
satisfies the property.

– A Reed-Solomon code RS : Fk+1 → Fn of rate R1 = O(ε) that enables a gen-
eralized list decoding. For n distinct elements {α1, . . . , αn} from a finite field
F, the codeword ofm = (m0, . . . ,mk) ∈ Fk+1 is RS(m) = (f(α1), . . . , f(αn)),
where f(X) = m0+m1X+ · · ·+mkX

k. The list decoding property guaran-
tees that, given n distinct pairs (αi, βi) ∈ F2 for i ∈ [n], one can find a list P
of all polynomials f of degree at most k that satisfy f(αi) = βi for at least
t values of i ∈ [n]. Sudan’s algorithm [12] is sufficient for our purpose. It
runs in time polynomial in n and log |F|, and works as long as the agreement
parameter t >

√
2kn. The size of the list P is at most

√
2n/k.

– A pseudorandom code family PRC = {PRCs : {0, 1}R2b × {0, 1}b → {0, 1}b}
of rate R2 indexed by a key s ∈ {0, 1}b with the following properties: (1) For
any constant ε < 1/2, PRCs is (1/2−ε, L)-list decodable with high probabil-
ity, where L and R2 only depend on ε, independent of b, and the probability
is taken over s ∈ {0, 1}b; (2) For any m ∈ {0, 1}R2b, PRCs(m,Ub) is pseu-
dorandom. Specifically, it is required that for any nc-time adversary and a
sequence of q = nd messages (m1, . . . ,mq) ∈ ({0, 1}R2b)q, it is difficult to
distinguish (PRC(m1, r1), . . . ,PRC(mℓ, rq)) from Uqb with probability more
than 1/nc, where c, d > 0 are constants, and each ri is chosen uniformly at
random from {0, 1}b.
A probabilistic construction with parameters R2 ≥ εO(1) and L ≤ (1/ε)O(1)

is presented in [6]. Their construction can be seen as an explicit construc-
tion in the secret-key setting, where a shared key s is used for choosing a
pseudorandom generator for nc-time adversaries. By setting b = O(log n),
the list-decoding algorithm can be performed in time polynomial in n. We
use this explicit construction in our scheme.

– A pseudorandom generator (PRG) G : {0, 1}n → {0, 1}p(n), where p(·) is
any polynomial. It is required that for any PPT algorithm, it is difficult
to distinguish G(Un) from the uniform distribution Up(n). Such G exists
assuming one-way functions exist [7].

– A pseudorandom function (PRF) family F = {Fn}n∈N, where Fn = {Fs :
{0, 1}n → {0, 1}n}s∈{0,1}n is a collection of functions indexed by a key
s ∈ {0, 1}n. For any PPT algorithm, it is difficult to distinguish whether
it has oracle access to Fs or a random function. Such F can be constructed
assuming the existence of one-way functions [4, 7].

– A message authentication code (MAC) (Tag,Vrfy), where the key is chosen
uniformly at random from {0, 1}n. It guarantees that for any PPT adversary,
given access to Tag and Vrfy oracles, it is difficult to forge a pair (m, t) of a
message and a tag that passes the verification of Vrfy. We use a code with
short tag. Namely, on input a key s ∈ {0, 1}n and a message m ∈ {0, 1}n,
Tag outputs a tag t ∈ {0, 1}nγ

for some constant γ ∈ (0, 1). Such a code
exists assuming the existence of one-way functions [3, 4, 7].

– A generator P for permutations π : [n] → [n] of the set [n] that uses
O(n log n) bits to specify a permutation. We use a straightforward con-
struction in which a permutation is chosen from the set of the possible
n! permutations of [n]. For a vector x = (x1, . . . , xn) ∈ {0, 1}n, we write
π(x) = (y1, . . . , yn), where yπ(i) = xi for i ∈ [n].

4.3 The Construction

For any positive real p < 1/2 and ε, we construct a code of rate R = 1−H(p)−ε
that is p-CCA secure. We assume that 2ε < 1/2 − p. For a message length
k ∈ N, the code length is n = ⌊k/R⌋. For any message m ∈ {0, 1}k, the encoded
codeword c ∈ {0, 1}n consists of ℓ blocks (B1, . . . , Bℓ), where each block Bi is
of length b = c log n for some constant c > 0, and thus ℓ = n/(c log n). We set
the following parameters: λ = nγ for a constant γ ∈ (0, 1), n′ = ⌊(k + λ)/R′⌋ =
(ℓ− κ)b, κ = ⌈6λ/(R1R2b)⌉, where R′ is the rate of REC, R1 = O(ε2/L2) is the
rate of RS over F with |F| = 2R2b/2, and R2 = εO(1) is the rate of PRC.

Setup Algorithm. On input a parameter 1n, the setup algorithm chooses four
random keys s1, s2, s3, s4 ∈ {0, 1}n for two PRF families F1 and F2, a MAC
(Tag,Vrfy), and a PRC family PRC, respectively. The first PRF F1 consists
of {F 1

s : {0, 1}k → {0, 1}3λ}s∈{0,1}n . The second PRF F2 consists of {F 2
s :

{0, 1}k × [ℓ] → {0, 1}b}s∈{0,1}n . The tagging algorithm Tag, on input a secret

key s3 and a message m ∈ {0, 1}k, outputs a tag of length λ. The secret key SK
is (s1, s2, s3, s4).

Encoding Algorithm. The encoding consists of the payload encoding and the
control-information encoding. On input a message m ∈ {0, 1}k, the control in-
formation s = (sπ, sµ, sV) ∈ {0, 1}3λ is generated as F 1

s1(m), where |sπ| = |sµ| =
|sV | = λ.

m τ

⊕

REC(m,τ)

π −1(REC(m,τ))

π −1(REC(m,τ))⊕ µ

µ

REC

π −1

s

f (α1), f (α2),!, f (ακ)

α1, f (α1) ακ , f (ακ)!

!

RS

PRC PRC

!

!n = (ℓ −κ)b

k λ = nγ

b = c logn

(ℓ −κ) blocks

b

3λ

n = bℓ

Fig. 1. Construction of the Code

The payload codeword is generated as follows: first, the tag τ = Tags3(m)

is generated, and a PRG Gπ : {0, 1}λ → {0, 1}O(n logn) is used to produce
r = Gπ(sπ). We use r and P (the generator of permutation of the set [n′]) to
generate a permutation π = P (r). A PRG Gµ : {0, 1}λ → {0, 1}n′

is used to

generate µ = Gµ(sµ). Finally, we take π and REC : {0, 1}k+λ → {0, 1}n′
to

produce the payload codeword cp = π−1(REC(m, τ))⊕ µ.
In the control-information encoding, first, s is encoded to a codeword

(f(α1), . . . , f(ακ)) by Reed-Solomon code RS of rate R1 over a finite field F.
A PRG GV : {0, 1}λ → [ℓ]κ is used to generate r′ = GV (sV). We use r′

to produce a set V = {v1, . . . , vκ} of distinct κ random samples in [ℓ]. Let
PRC : F2 × {0, 1}b → {0, 1}b be a pseudorandom code of rate R2 that is
(p+ ε, L)-list decodable, where p+ ε < 1/2− ε, R2 = εO(1), and L = (1/ε)O(1).
For i ∈ [κ], each pair of elements (αi, f(αi)) is encoded to the vi-th block
Bvi = PRC((αi, f(αi)), F

2
s2(m, i)), where the output of PRF is used for random

coins. The control-information codeword is (Bv1 , Bv2 , . . . , Bvκ).
The payload codeword cp is divided into ℓ − κ blocks (Bi1 , Bi2 , . . . , Biℓ−κ

),
where ij is the j-th smallest element in [ℓ] \ V , and each block Bi ∈ {0, 1}b and
n′ = (ℓ− κ)b. The final codeword is (B1, B2, . . . , Bℓ) ∈ ({0, 1}b)ℓ = {0, 1}n.

The construction is summarized in Figure 1.

Decoding Algorithm. On input y ∈ {0, 1}n, divide y into ℓ blocks
(Y1, Y2, . . . , Yℓ) ∈ ({0, 1}b)ℓ.

For i ∈ [ℓ], decode block Yi by the list-decoding algorithm of PRC. By com-
bining the output lists for all i ∈ [ℓ], a list L1 of pairs {(αj , βjh)h}j for j ∈ [κ] is
obtained. The size of L1 is at most ℓL. Then, apply the list-decoding algorithm of
RS to L1 with an agreement parameter t = εκ/2 to generate a list L2 of control
information s̃ = (s̃π, s̃µ, s̃V). The size of L2 is at most

√
2/R1 = O(L/ε).

Let L3 be the empty list. For each s̃ = (s̃π, s̃µ, s̃V) ∈ L2, do the following.

Recover π̃ = P (Gπ(s̃π)), µ̃ = G(s̃µ), and Ṽ = {v1, . . . , vκ}, whereGV (s̃V) is used

to produce Ṽ . Let ỹ be the concatenation of blocks (Yi1 , Yi2 , . . . , Yiℓ−κ
) ∈ {0, 1}n′

,

where ij is the j-th smallest element in [ℓ] \ Ṽ . Decode z̃ = π(ỹ ⊕ µ̃) with the
decoding algorithm of REC. Let (m̃, τ̃) be the output. If Vrfy(m̃, τ̃) outputs false,
go back and choose next s̃ from L2. Otherwise, recover s̃′ as Fs1(m̃). If s̃′ ̸= s̃,
go back and choose next s̃ from L2. Else, recover the encoded message c̃ for
a message m̃ and a control information s̃ by following the encoding algorithm.
Check if the Hamming distance between c̃ and y is at most ⌈pn⌉. If so, add m̃
to L3; and otherwise do nothing. Then, go back and choose next s̃ from L2.

After choosing all elements in L2, output L3 if L3 ̸= ∅, and ⊥ otherwise.

The Rate of the Code. For any positive constant p < 1/2 and ε, we choose a
random p-error correcting code of rate R′ = 1−H(p)− ε′ such that 0 < ε′ < ε.
It holds that R′ = (k + λ)/n′. The length of the control-information blocks is
κb ≤ c0b for sufficiently large constant c0. Thus, the rate of the code is

R =
k

n′ + κb
≥ R′n′ − λ

n′ + c0b
= R′ − R′c0b/λ+ 1

(n′ + c0b)/λ
.

Note that b = c logn and λ = nγ for γ ∈ (0, 1). Since R′c0b/λ = o(1) and
(n′ + c0b)/λ = Ω(n1−γ), we have that R = 1 − H(p) − ε′ − O(n−(1−γ)) ≥
1−H(p)− ε for sufficiently large n.

5 Security Proof

We prove the following theorem.

Theorem 1. Assume that there exist one-way functions. For any positive con-
stants p < 1/2, ε, c, the coding scheme of rate R ≥ 1 − H(p) − ε described in
Section 4.3 is (p, nc, n−c)-CCA secure.

Proof. We prove the security with a sequence of hybrid games where the first
game corresponds to the original CCA security game.

– Game0: The original CCA security game between the challenger and the
channel.
1. The secret key SK = (s1, s2, s3, s4) ∈ {0, 1}4n is chosen uniformly at

random.
2. The channel makes queries for m ∈ {0, 1}k to the encoding oracle and

for y ∈ {0, 1}n to the decoding oracle, and outputs m∗ ∈ {0, 1}k. The
responses of the oracles are made according to the encoding and the
decoding algorithms.

3. Let s = (sπ, sµ, sV) = F 1
s1(m

∗). The payload codeword is generated as
π−1(REC(m, τ))⊕µ, where π = P (Gπ(sπ)), τ = Tags3(m

∗), µ = Gµ(sµ).
Then, s is encoded as (f(α1), . . . , f(ακ)) by RS. Let V ∗ = {v1, . . . , vκ}
be the set generated from the seed r′ = GV (sV). The vi-th block Bvi

is generated as PRCs4((αi, f(αi)), F
2
s2(m, i)). The payload codeword is

divided into ℓ − κ blocks (Bi1 , . . . , Biℓ−κ
), where ij is the j-th smallest

element in [ℓ]\V ∗. The challenge codeword c∗ = (B1, B2, . . . , Bℓ) is given
to the channel.

4. The channel makes queries to the encoding and the decoding oracles,
and outputs y∗ ∈ {0, 1}n such that ∆(y, c∗) ≤ ⌈pn⌉.

5. Let L be the output of the decoding algorithm on input y∗. If m∗ /∈ L,
the channel wins. Otherwise, the channel loses.

– Game1: The same as Game0 except that all the outputs of PRFs are replaced
with uniformly random strings. Specifically, s is chosen uniformly at random,
and the uniformly random bits are used as random coins for PRC.

– Game2: The same as Game1 except that all the outputs of PRGs are replaced
with uniformly random strings. Specifically, the input to the permutation
generator P and (v1, . . . , vκ) are chosen uniformly at random.

– Game3: The same as Game2 except that for every querym to the encoding or-
acle and the challenge message m∗, the corresponding codeword is generated
by choosing a uniformly random string from {0, 1}n.

– Game4: The same as Game3 except that for every query m to the encoding
oracle, prepare an entry (m, c) in a list LQ, where c is the codeword of m.
The pair of the challenge message and codeword (m∗, c∗) is also included in
LQ. For every query m to the encoding oracle, responds with c such that
(m, c) ∈ LQ; for every query y to the decoding oracle, respond with a list
{m ∈ {0, 1}k : (m, c) ∈ LQ and ∆(y, c) ≤ ⌈pn⌉}.

– Game5: The same as Game4 except that the channel is not allowed to query
the oracles at Steps 2 and 4.

The probability that a channel wins is called an advantage of the channel.

First, it can be shown that the advantage of any PPT channel in Game1 is
negligibly close to that in Game0. This is because the keys s1 and s2 for PRFs
are not disclosed to the channel, and thus the security of PRF guarantees it.

It follows from the security of PRG that the advantage of any PPT channel
in Game2 is negligibly close to that in Game1.

In Game3, all the codewords are chosen uniformly at random. The change is
not detected by nc-time channels with advantage more than n−c for any c > 0
because for each codeword, the payload part is masked by a random string µ,
and the control-information part is pseudorandom due to the property of PRC.
Thus, the advantage of any PPT channel in Game3 is close to that in Game2
within n−c.

Lemma 1. Let c > 0 be any constant. For any nc-time channel, the advantage
in Game4 is close to that in Game3 within n−c.

Proof. It is necessary to prove that the response to the oracle queries can be
replaced with the responses using the list LQ.

Assume that there exists an nc-time channel W for which the advantage in
Game4 is greater than that in Game3 by n−c. By fixing the random coins of W ,
there is a deterministic channel W0 that achieves the same advantages as W .

Since W0 is deterministic, we can prepare a list LQ for answering the oracle
queries by W0. The list LQ is constructed as follows. Let mi be the i-th query
to the encoding oracle, and yi the i-th query to the decoding one. For each
mi, choose ci ∈ {0, 1}n uniformly at random, and add (mi, ci) to LQ. The pair
(m∗, c∗) of the challenge message and ciphertext is also added to LQ. Then, for
each yi, we sample the number ℓi ∈ N, which represents the number of valid
codewords within a distance ⌈pn⌉ from yi. The number ℓi is chosen according
to the distribution D such that Pr[D = j] = pj for j ∈ [2Rn], where pj is the
probability that a fixed Hamming ball of radius pn contains j codewords when
all codewords are chosen uniformly at random. For chosen ℓi, if the number of
codewords cj in LQ satisfying ∆(yi, cj) ≤ ⌈pn⌉ is less than ℓi, add pairs (mj , cj)
of random message and codeword to LQ so that ℓi = |{(mj , cj) ∈ LQ|∆(yi, cj) ≤
⌈pn⌉}|. Since each ℓj is bounded above by a polynomial in n, the size of LQ is
also bounded by a polynomial in n.

Note that, since it is necessary to generate MAC tags to generate valid code-
words, W0 cannot generate valid codewords by himself. Since each message has
the unique codeword, W0 cannot generate a valid codeword c′ of a message m
from the codeword c(̸= c′) of m obtained by querying to the encoding oracle.
Thus, all valid codewords appeared in the game are included in the list LQ.

Since every response to the encoding query looks random for W0, the en-
coding oracle can be simulated by using LQ. For each decoding query yi, the
response by using LQ is equivalent to that of the decoding oracle of random
codes. Therefore, both the encoding and the decoding oracles can be simulated
successfully.

Next, we show that the channel cannot generate query y for which there is
some (m, c) ∈ LQ satisfying ∆(y, c) ≤ ⌈pn⌉, but the decoding algorithm outputs
a list in which m is not included. It means that, on input y, the decoder fails to
recover m. We show that the decoding algorithm can recover m for such y with
high probability.

For (m, c) ∈ LQ, let e = y ⊕ c. For an error vector e ∈ {0, 1}n and a set
V ⊆ [n], which specifies the positions of the control blocks, we say that V is
good for e if there are at least εκ/2 control blocks in which the fraction of errors
is at most p+ ε.

Let π and V be the permutation and the set that are generated in encoding
m to c. Then, V is independent of e. This is because the payload part of c is
pseudorandom by the random mask µ, and the control-information part of c is
also pseudorandom by the property of PRC. Thus, the information on V is not
revealed from c, and hence V is independent of e. Since V is chosen uniformly at
random independently from e, V is good for e except with negligible probability.
The analysis can be done in a similar way to the proof of [6, Lemma 7.11].

When V is good for e, due to the list-decoding property of PRC, the decoding
algorithm can generate a list L1 that contains correct symbols f(αi) for at least
εκ/2 control blocks. Since the PRC decoding outputs a list at most L, the size
of L1 is at most ℓL. On input L1, the list decoding of RS outputs a list L2 of
size O(L/ε) that contains the correct control information s = (sπ, sµ, sV), which
is equal to the value of PRF F 1

s1 on input m. Given the correct value s, the
correct values of π, µ, V can be recovered. By the same reason as for V , π is
chosen uniformly at random independently from e. Thus, it follows from the p-
error correctability of REC that the decoder of REC outputs the correct m with
probability at least 1− negl(n).

We have proved that for any query y to the decoding oracle, (1) if there is
no (m, c) ∈ LQ satisfying ∆(y, c) ≤ ⌈pn⌉, the decoder output ⊥; (2) if there is
(m, c) ∈ LQ satisfying ∆(y, c) ≤ ⌈pn⌉, the decoder outputs a list containing m.
Therefore, the response of the decoding oracle in Game2 can be replaced with
the response using LQ as in Game3. The statement follows. ⊓⊔

Next, we show that for any PPT channel W that has the advantage ε in
Game4, there is a PPT channel W ′ that has the same advantage in Game5. It is
sufficient to show that W ′ can simulate the encoding and decoding oracles for
W in Game4. As described in the proof of Lemma 1, by preparing the list LQ,
W ′ can simulate the encoding and the decoding oracles for W in Game4.

Finally, we argue that the advantage of any nc-time channel W in Game5
is at most n−c. Note that the only valid codeword W obtains in Game5 is the
challenge codeword c∗ of the challenge message m∗. As discussed in the proof of
Lemma 1, it is difficult for W to generate y for which ∆(y, c∗) ≤ ⌈pn⌉ and the
decoder outputs ⊥ or a list in whichm∗ is not included. Therefore, the advantage
of any nc-time channel in Game5 is at most n−c.

We have proved that, for any nc-time channel, the advantages in Gamei are
close each other within n−c for i ∈ {0, 1, 2, 3, 4, 5}, and the advantage in Game5
is at most n−c. By taking a constant c sufficiently large enough, we can conclude
that, for any nc-time channel, the advantage in Game0 is at most n−c, which
implies that the coding scheme is (p, nc, n−c)-CCA secure. ⊓⊔

Acknowledgment

This research was supported in part by JSPS/MEXT Grant-in-Aid for Scientific
Research Numbers 15H00851 and 16H01705.

References

1. E. Arikan. Channel polarization: a method for constructing capacity-achieving
codes for symmetric binary-input memoryless channels. IEEE Trans. Information
Theory, 55(7):3051–3073, 2009.

2. G. D. Forney. Concatenated Codes. MIT research monograph, no. 37. MIT Press,
Cambridge, 1966.

3. O. Goldreich, S. Goldwasser, and S. Micali. On the cryptographic applications of
random functions. In G. R. Blakley and D. Chaum, editors, Advances in Cryptol-
ogy, Proceedings of CRYPTO ’84, Santa Barbara, California, USA, August 19-22,
1984, Proceedings, volume 196 of Lecture Notes in Computer Science, pages 276–
288. Springer, 1984.

4. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
J. ACM, 33(4):792–807, 1986.

5. V. Guruswami and A. Smith. Codes for computationally simple channels: Explicit
constructions with optimal rate. In FOCS, pages 723–732. IEEE Computer Society,
2010.

6. V. Guruswami and A. Smith. Optimal-rate code constructions for computationally
simple channels. CoRR, abs/1004.4017, 2013. This is an extended version of [5].

7. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

8. M. Langberg. Private codes or succinct random codes that are (almost) perfect. In
45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19 October
2004, Rome, Italy, Proceedings, pages 325–334. IEEE Computer Society, 2004.

9. R. J. Lipton. A new approach to information theory. In P. Enjalbert, E. W. Mayr,
and K. W. Wagner, editors, STACS, volume 775 of Lecture Notes in Computer
Science, pages 699–708. Springer, 1994.

10. S. Micali, C. Peikert, M. Sudan, and D. A. Wilson. Optimal error correction
against computationally bounded noise. In J. Kilian, editor, Theory of Cryptog-
raphy, Second Theory of Cryptography Conference, TCC 2005, Cambridge, MA,
USA, February 10-12, 2005, Proceedings, volume 3378 of Lecture Notes in Com-
puter Science, pages 1–16. Springer, 2005.

11. S. Micali, C. Peikert, M. Sudan, and D. A. Wilson. Optimal error correction
for computationally bounded noise. IEEE Transactions on Information Theory,
56(11):5673–5680, 2010.

12. M. Sudan. Decoding of reed solomon codes beyond the error-correction bound. J.
Complexity, 13(1):180–193, 1997.

